• Title/Summary/Keyword: optical transmission

Search Result 1,805, Processing Time 0.031 seconds

Strain Transmission Ratio of a Distributed Optical Fiber Sensor with a Coating Layer (코팅된 분포형 광섬유 센서의 변형률 전달률)

  • Yoon, S.Y.;Kown, I.B.;Yu, H.S.;Kim, E.
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.429-434
    • /
    • 2018
  • We investigate strain transmissions of a surface bonded distributed optical fiber sensor considering strain variation according to positions. We first derive a strain transmission ratio depending on a wavelength of a strain distribution of the host structure from an analysis model. The strain transmission ratio is compared with numerical results obtained from the finite element method using ABAQUS. We find that the analytical results agree well with the numerical results. The strain transmission ratio is a function of a wavelength, i.e. the strain transmission ratio decreases (increases) as the wavelength of the host strain decreases (increases). Therefore, if an arbitrary strain distribution containing various wavelengths is given to a host structure, a distorted strain distribution will be observed in the distributed optical fiber sensor compare to that of the host structure, because each wavelength shows different strain transmission ratio. The strain transmission ratio derived in this study will be useful for accurately identifying the host strain distribution based on the signal of a distributed optical fiber sensor.

Improved Selective Randomized Load Balancing in Mesh Networks

  • Zhang, Xiaoning;Li, Lemin;Wang, Sheng;Yang, Fei
    • ETRI Journal
    • /
    • v.29 no.2
    • /
    • pp.255-257
    • /
    • 2007
  • We propose an improved selective randomized load balancing (ISRLB) robust scheme under the hose uncertainty model for a special double-hop routing network architecture. The ISRLB architecture maintains the resilience properties of Valiant's load balancing and reduces the network cost/propagation delay in all other robust routing schemes.

  • PDF

10 Gbps Optical Signal Transmission via Long-Range Surface Plasmon Polariton Waveguide

  • Ju, Jung-Jin;Kim, Min-Su;Park, Sun-Tak;Kim, Jin-Tae;Park, Seung-Koo;Lee, Myung-Hyun
    • ETRI Journal
    • /
    • v.29 no.6
    • /
    • pp.808-810
    • /
    • 2007
  • We demonstrate 10 Gbps optical signal transmission via long-range surface plasmon polaritons (LR-SPPs) in a very thin metal strip-guided geometry. The LR-SPP waveguide was fabricated as a 14 nm thick, 2.5 ${\mu}m$ wide, and 4 cm long gold strip embedded in a polymer and pigtailed with single-mode fibers. The total insertion loss of 16 dB was achieved at a wavelength of 1.55 ${\mu}m$ as a carrier wave. In a 10 Gbps optical signal transmission experiment, the LR-SPP waveguide exhibits an excellent eye opening and a 2.2 dB power penalty at $10^{-12}$ bit error rate. We confirm, for the first time, that LR-SPPs can efficiently transfer data signals as well as the carrier light.

  • PDF

An Algorithm for Bit Error Rate Monitoring and Adaptive Decision Threshold Optimization Based on Pseudo-error Counting Scheme

  • Kim, Sung-Man
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.22-27
    • /
    • 2010
  • Bit error rate (BER) monitoring is the ultimate goal of performance monitoring in all digital transmission systems as well as optical fiber transmission systems. To achieve this goal, optimization of the decision threshold must also be considered because BER is dependent on the level of decision threshold. In this paper, we analyze a pseudo-error counting scheme and propose an algorithm to achieve both BER monitoring and adaptive decision threshold optimization in optical fiber transmission systems. To verify the effectiveness of the proposed algorithm, we conduct computer simulations in both Gaussian and non-Gaussian distribution cases. According to the simulation results, BER and the optimum decision threshold can be estimated with the errors of < 20% and < 10 mV, respectively, within 0.1-s processing time in > 40-Gb/s transmission systems.

Coherent optical transmission experiment using FSK modulation and heterodyne detection scheme (FSK/Heterodyne 변복조 방식에 의한 코히런트 광송수신 실험)

  • 박희갑
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1991.06a
    • /
    • pp.121-125
    • /
    • 1991
  • A basic coherent optical transmission was demonstrated using FSK modulation and heterodyne detection scheme. Optical frequency of DFB LD light source at the transmitter side was stabilized with Fabry Perot etalon and bias feedback circuit. A tunable external cavity LD was used as a local oscillator at the receiver. Heterodyned output signal at IF frequency of 2GHz was measured and discussed.

  • PDF

A Study on the Condition for Error Probability Maintenance in On-Off Keying Transmission System (On-Off Keying 전송 시스템의 에러 확률 유지를 위한 조건에 관한 연구)

  • Ra, Yoo-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1784-1788
    • /
    • 2012
  • In this paper we considered condition for keep standard error probability in optical transmission system that applied on-off keying transmission which are modulated amplitude along the signal. we calculated received sensitivity of receiver in on-off keying transmission for optical detector have quantum efficiency belong 1 in optical transmission system. For BT is over 30, the number of photon is belong 10000 for maintain standard error probability. also we considered Also, we install a preamplifier to the receiver for considering the low output may be used with a light that was able to get results.

A New Physical Layer Transmission Scheme for LPI and High Throughput in the Cooperative SC-FDMA System

  • Li, Yingshan;Wu, Chao;Sun, Dongyan;Xia, Junli;Ryu, Heung-Gyoon
    • Journal of Communications and Networks
    • /
    • v.15 no.5
    • /
    • pp.457-463
    • /
    • 2013
  • In recent days, cooperative diversity and communication security become important research issues for wireless communications. In this paper, to achieve low probability of interception (LPI) and high throughput in the cooperative single-carrier frequency division multiple access (SC-FDMA) system, a new physical layer transmission scheme is proposed, where a new encryption algorithm is applied and adaptive modulation is further considered based on channel state information (CSI). By doing so, neither relay node nor eavesdropper can intercept the information signals transmitted from user terminal (UT). Simulation results show above new physical layer transmission scheme brings in high transmission safety and secrecy rate. Furthermore, by applying adaptive modulation and coding (AMC) technique according to CSI, transmission throughput can be increased significantly. Additionally, low peak-to-average power ratio (PAPR) characteristic can still be remained due to the uniform distribution of random coefficients used for encryption algorithm.

Repeaterless Transmission Length on the Atmospheric Wireless Optical LOS Communication Links (대기 광 무선 LOS 통신링크에서 무중계 전송거리에 관한 연구)

  • Jung, Jin-Ho
    • Journal of IKEEE
    • /
    • v.2 no.2 s.3
    • /
    • pp.194-199
    • /
    • 1998
  • In the atmospheric wireless optical communication system, the low power transmission can be accomplished by the high directivity of laser beam. But, the transmitted optical signal undergoes the serious influences by the atmospheric effects like absorption, scattering, and turbulence because the transmission channel is the atmospheric space. In this paper, therefore, we obtain the link equation for an atmospheric wireless optical LOS communication link under the atmospheric effects and find the repeaterless transmission length to estimate the system performance through the computer simulation. From the results of the computer simulation, we present the transmission length that is possible to transmit without a repeater at given data rates and know that data rate is decreased rapidly when the transmission length is increased slightly at given bit error rate.

  • PDF

Analysis of the Influence of Mutual Relation of Optical Pulse Frequency Chirp and Kerr Effect on the Mid-Span Spectral Inversion Methods for the Long-Haul Optical Transmission (광 펄스 주파수 첩과 Kerr 효과의 상호 관계가 장거리 광 전송을 위한 MSSI 보상 기법에 미치는 영향 분석)

  • 이성렬;이윤현
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.9
    • /
    • pp.898-906
    • /
    • 2002
  • In this paper, we investigated the improvement degree of transmission distance of the various initial frequency chirped optical pulse with 5 dBm initial power dependence on the various bit rate and fiber dispersion coefficient, when MSSI(Mid-Span Spectral Inversion) with the optimal pump power condition is adopted for the compensation method for optical pulse distortion. And we analyzed the influence of mutual relation of optical pulse frequency chirp and Kerr effect on the MSSI methods for the long-haul optical transmission through the computer simulation. We found that the compensation degree of distorted optical pulse varies as a consequence of the variation of combined phase modulation of self phase modulation(Kerr effect) and initial frequency chirp parameter dependence on the fiber dispersion coefficient. And we found that, if the transmission bit rate is increased k times, the dispersion coefficient value of dispersion shift fiber is decreased $2^k$ times so as to be almost the same performance of the transmission system with k times lower bit rate.

System Performance Improvements in WDM ($24{\times}40$ Gbps) Transmission using Optical Phase Conjugator and Dispersion Management (WDM ($24{\times}40$ Gbps) 전송에서 광 위상 공액기와 분산 제어를 이용한 시스템 성능 개선)

  • Lee, Seong-Real;Yim, Hwang-Bin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.10B
    • /
    • pp.855-864
    • /
    • 2008
  • Optical link techniques compensating chromatic dispersion and nonlinear effects, which affect distortion of optical signals, generated in single mode fiber are investigated through computer simulation and design rule of these link techniques is proposed for implementation of wideband and long-haul WDM ($24{\times}40$ Gbps) transmission system. The optical link consist of dispersion management (DM) compensating the cumulated dispersion through total transmission line and optical phase conjugation in middle of total transmission line for compensating distorted signals by frequency inversion. DM schemes considered in this research are lumped DM and inline DM. It is confirmed that eye opening penalty (EOP) of overall WDM channels are more improved than those in WDM transmission systems with only optical phase conjugator (OPC), if DM is additionally applied to these systems. And, design rule in both DM schemes are proposed by using effective residual dispersion range. It is confirmed that inline DM is better than lumped DM in the improving EOP of total WDM channels and in effective residual dispersion range.