• Title/Summary/Keyword: optical transmission

Search Result 1,797, Processing Time 0.03 seconds

IGRINS Design and Performance Report

  • Park, Chan;Jaffe, Daniel T.;Yuk, In-Soo;Chun, Moo-Young;Pak, Soojong;Kim, Kang-Min;Pavel, Michael;Lee, Hanshin;Oh, Heeyoung;Jeong, Ueejeong;Sim, Chae Kyung;Lee, Hye-In;Le, Huynh Anh Nguyen;Strubhar, Joseph;Gully-Santiago, Michael;Oh, Jae Sok;Cha, Sang-Mok;Moon, Bongkon;Park, Kwijong;Brooks, Cynthia;Ko, Kyeongyeon;Han, Jeong-Yeol;Nah, Jakyuong;Hill, Peter C.;Lee, Sungho;Barnes, Stuart;Yu, Young Sam;Kaplan, Kyle;Mace, Gregory;Kim, Hwihyun;Lee, Jae-Joon;Hwang, Narae;Kang, Wonseok;Park, Byeong-Gon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.90-90
    • /
    • 2014
  • The Immersion Grating Infrared Spectrometer (IGRINS) is the first astronomical spectrograph that uses a silicon immersion grating as its dispersive element. IGRINS fully covers the H and K band atmospheric transmission windows in a single exposure. It is a compact high-resolution cross-dispersion spectrometer whose resolving power R is 40,000. An individual volume phase holographic grating serves as a secondary dispersing element for each of the H and K spectrograph arms. On the 2.7m Harlan J. Smith telescope at the McDonald Observatory, the slit size is $1^{{\prime}{\prime}}{\times}15^{{\prime}{\prime}}$. IGRINS has a plate scale of 0.27" pixel-1 on a $2048{\times}2048$ pixel Teledyne Scientific & Imaging HAWAII-2RG detector with a SIDECAR ASIC cryogenic controller. The instrument includes four subsystems; a calibration unit, an input relay optics module, a slit-viewing camera, and nearly identical H and K spectrograph modules. The use of a silicon immersion grating and a compact white pupil design allows the spectrograph collimated beam size to be 25mm, which permits the entire cryogenic system to be contained in a moderately sized ($0.96m{\times}0.6m{\times}0.38m$) rectangular Dewar. The fabrication and assembly of the optical and mechanical components were completed in 2013. From January to July of this year, we completed the system optical alignment and carried out commissioning observations on three runs to improve the efficiency of the instrument software and hardware. We describe the major design characteristics of the instrument including the system requirements and the technical strategy to meet them. We also present the instrumental performance test results derived from the commissioning runs at the McDonald Observatory.

  • PDF

Modern Paper Quality Control

  • Olavi Komppa
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2000.06a
    • /
    • pp.16-23
    • /
    • 2000
  • The increasing functional needs of top-quality printing papers and packaging paperboards, and especially the rapid developments in electronic printing processes and various computer printers during past few years, set new targets and requirements for modern paper quality. Most of these paper grades of today have relatively high filler content, are moderately or heavily calendered , and have many coating layers for the best appearance and performance. In practice, this means that many of the traditional quality assurance methods, mostly designed to measure papers made of pure. native pulp only, can not reliably (or at all) be used to analyze or rank the quality of modern papers. Hence, introduction of new measurement techniques is necessary to assure and further develop the paper quality today and in the future. Paper formation , i.e. small scale (millimeter scale) variation of basis weight, is the most important quality parameter of paper-making due to its influence on practically all the other quality properties of paper. The ideal paper would be completely uniform so that the basis weight of each small point (area) measured would be the same. In practice, of course, this is not possible because there always exists relatively large local variations in paper. However, these small scale basis weight variations are the major reason for many other quality problems, including calender blacking uneven coating result, uneven printing result, etc. The traditionally used visual inspection or optical measurement of the paper does not give us a reliable understanding of the material variations in the paper because in modern paper making process the optical behavior of paper is strongly affected by using e.g. fillers, dye or coating colors. Futhermore, the opacity (optical density) of the paper is changed at different process stages like wet pressing and calendering. The greatest advantage of using beta transmission method to measure paper formation is that it can be very reliably calibrated to measure true basis weight variation of all kinds of paper and board, independently on sample basis weight or paper grade. This gives us the possibility to measure, compare and judge papers made of different raw materials, different color, or even to measure heavily calendered, coated or printed papers. Scientific research of paper physics has shown that the orientation of the top layer (paper surface) fibers of the sheet paly the key role in paper curling and cockling , causing the typical practical problems (paper jam) with modern fax and copy machines, electronic printing , etc. On the other hand, the fiber orientation at the surface and middle layer of the sheet controls the bending stiffness of paperboard . Therefore, a reliable measurement of paper surface fiber orientation gives us a magnificent tool to investigate and predict paper curling and coclking tendency, and provides the necessary information to finetune, the manufacturing process for optimum quality. many papers, especially heavily calendered and coated grades, do resist liquid and gas penetration very much, bing beyond the measurement range of the traditional instruments or resulting invonveniently long measuring time per sample . The increased surface hardness and use of filler minerals and mechanical pulp make a reliable, nonleaking sample contact to the measurement head a challenge of its own. Paper surface coating causes, as expected, a layer which has completely different permeability characteristics compared to the other layer of the sheet. The latest developments in sensor technologies have made it possible to reliably measure gas flow in well controlled conditions, allowing us to investigate the gas penetration of open structures, such as cigarette paper, tissue or sack paper, and in the low permeability range analyze even fully greaseproof papers, silicon papers, heavily coated papers and boards or even detect defects in barrier coatings ! Even nitrogen or helium may be used as the gas, giving us completely new possibilities to rank the products or to find correlation to critical process or converting parameters. All the modern paper machines include many on-line measuring instruments which are used to give the necessary information for automatic process control systems. hence, the reliability of this information obtained from different sensors is vital for good optimizing and process stability. If any of these on-line sensors do not operate perfectly ass planned (having even small measurement error or malfunction ), the process control will set the machine to operate away from the optimum , resulting loss of profit or eventual problems in quality or runnability. To assure optimum operation of the paper machines, a novel quality assurance policy for the on-line measurements has been developed, including control procedures utilizing traceable, accredited standards for the best reliability and performance.

Effect of Growth Factors in Doping Concentration of MBE Grown GaAs for Tunnel Diode in Multijunction Solar Cell

  • Park, Gwang-Uk;Gang, Seok-Jin;Gwon, Ji-Hye;Kim, Jun-Beom;Yeo, Chan-Il;Lee, Yong-Tak
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.308-309
    • /
    • 2012
  • One of the critical issues in the growth of multijunction solar cell is the formation of a highly doped Esaki interband tunnel diode which interconnects unit cells of different energy band gap. Small electrical and optical losses are the requirements of such tunnel diodes [1]. To satisfy these requirements, tens of nanometer thick gallium arsenide (GaAs) can be a proper candidate due to its high carrier concentration in low energy band gap. To obtain highly doped GaAs in molecular beam epitaxy, the temperatures of Si Knudsen cell (K-cell) for n-type GaAs and Be K-cell for p-type GaAs were controlled during GaAs epitaxial growth, and the growth rate is set to 1.75 A/s. As a result, the doping concentration of p-type and n-type GaAs increased up to $4.7{\times}10^{19}cm^{-3}$ and $6.2{\times}10^{18}cm^{-3}$, respectively. However, the obtained n-type doping concentration is not sufficient to form a properly operating tunnel diode which requires a doping concentration close to $1.0{\times}10^{19}cm^{-3}$ [2]. To enhance the n-type doping concentration, n-doped GaAs samples were grown with a lower growth rate ranging from 0.318 to 1.123 A/s at a Si K-cell temperature of $1,180^{\circ}C$. As shown in Fig. 1, the n-type doping concentration was increased to $7.7{\times}10^{18}cm^{-3}$ when the growth rate was decreased to 0.318 A/s. The p-type doping concentration also increased to $4.1{\times}10^{19}cm^{-3}$ with the decrease of growth rate to 0.318 A/s. Additionally, bulk resistance was also decreased in both the grown samples. However, a transmission line measurement performed on the n-type GaAs sample grown at the rate of 0.318 A/s showed an increased specific contact resistance of $6.62{\times}10^{-4}{\Omega}{\cdot}cm^{-2}$. This high value of contact resistance is not suitable for forming contacts and interfaces. The increased resistance is attributed to the excessively incorporated dopant during low growth rate. Further studies need to be carried out to evaluate the effect of excess dopants on the operation of tunnel diode.

  • PDF

Electrical Behavior of the Circuit Screen-printed on Polyimide Substrate with Infrared Radiation Sintering Energy Source (열소결로 제작된 유연기판 인쇄회로의 전기적 거동)

  • Kim, Sang-Woo;Gam, Dong-Gun;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.3
    • /
    • pp.71-76
    • /
    • 2017
  • The electrical behavior and flexibility of the screen printed Ag circuits were investigated with infrared radiation sintering times and sintering temperatures. Electrical resistivity and radio frequency characteristics were evaluated by using the 4 point probe measurement and the network analyzer by using cascade's probe system, respectively. Electrical resistivity and radio frequency characteristics means that the direct current resistance and signal transmission properties of the printed Ag circuit. Flexibility of the screen printed Ag circuit was evaluated by measuring of electrical behavior during IPC sliding test. Failure mode of the Ag printed circuits was observed by using field emission scanning electron microscope and optical microscope. Electrical resistivity of the Ag circuits screen printed on Pl substrate was rapidly decreased with increasing sintering temperature and durations. The lowest electrical resistivity of Ag printed circuit was up to $3.8{\mu}{\Omega}{\cdot}cm$ at $250^{\circ}C$ for 45 min. The crack length arisen within the printed Ag circuit after $10{\times}10^4$ sliding numbers was 10 times longer than that of after $2.5{\times}10^4$ sliding numbers. Measured insertion loss and calculated insertion loss were in good agreements each other. Insertion loss of the printed Ag circuit was increased with increasing the number of sliding cycle.

Synthesis and Optical Property of Au/Cu, Au/Ag Alloy Nanocluster (Au/Cu, Au/Ag 합금 나노 미립자의 합성과 광학적 성질)

  • Na Hye Jin Na;Kyoung Chul Lee;Eun Ah Yoo;Kang Sup Chung
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.4
    • /
    • pp.315-324
    • /
    • 2003
  • In this study, a new method is presented to produce stable hydrophobic metal alloy nanocluster in chloroform solution including surfactant NaAOT(sodium bis(2-ethylhexyl)-sulfosuccinate) via the chemical reduction of metal salt $(HAuCl_4,\AgNO_3,\Cu(NO_3)_2)$ by sodium borohydride. For the alloy nanocluster, several samples were prepared by changing the molar ratio of Au/Cu, Au/Ag alloy nanocluster, 3:1, 1:1, 1:3. The alloy nanoclusters were characterized by UV-Visible spectrophotometer, TEM(Transmission Electron Microscope), and XPS(X-ray Photoelectron Spectrometer). With the change of the mole ratio of the alloy component, the wavelengths of the surface plasmon absorption shift linearly from 520 nm of the pure Au nanocluster to 570 nm of the pure Cu nanocluster for Au/Cu alloy nanoclusters and from 405 nm to 520 nm for Au/Ag alloy nanoclusters. The chemical shifts of the Au4f, Ag3d, Cu2p XPS peaks were observed with changing the molar ratio of the alloy element. The alloy nanoclusters in chloroform solution were made uniformly in size and colloidally stable for long periods of time. These results indicate that the method here is a very effective method for synthesizing hydrophobic alloy nanoclusters with uniform or nearly uniform particle size distribution.

Characteristics of graphene sheets synthesized by the Thermo-electrical Pulse Induced Evaporation (전계 펄스 인가 증발 방법을 이용한 그라핀의 특성 연구)

  • Park, H.Y.;Kim, H.W.;Song, C.E.;Ji, H.J.;Choi, S.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.412-412
    • /
    • 2009
  • Carbon-based nano materials have a significant effect on various fields such as physics, chemistry and material science. Therefore carbon nano materials have been investigated by many scientists and engineers. Especially, since graphene, 2-dimemsonal carbon nanostructure, was experimentally discovered graphene has been tremendously attracted by both theoretical and experimental groups due to their extraordinary electrical, chemical and mechanical properties. Electrical conductivity of graphene is about ten times to that of silicon-based material and independent of temperature. At the same time silicon-based semiconductors encountered to limitation in size reduction, graphene is a strong candidate substituting for silicon-based semiconductor. But there are many limitations on fabricating large-scale graphene sheets (GS) without any defect and controlling chirality of edges. Many scientists applied micromechanical cleavage method from graphite and a SiC decomposition method to the fabrication of GS. However these methods are on the basic stage and have many drawbacks. Thereupon, our group fabricated GS through Thermo-electrical Pulse Induced Evaporation (TPIE) motivated by arc-discharge and field ion microscopy. This method is based on interaction of electrical pulse evaporation and thermal evaporation and is useful to produce not only graphene but also various carbon-based nanostructures with feeble pulse and at low temperature. On fabricating GS procedure, we could recognize distinguishable conditions (electrical pulse, temperature, etc.) to form a variety of carbon nanostructures. In this presentation, we will show the structural properties of OS by synthesized TPIE. Transmission Electron Microscopy (TEM) and Optical Microscopy (OM) observations were performed to view structural characteristics such as crystallinity. Moreover, we confirmed number of layers of GS by Atomic Force Microscopy (AFM) and Raman spectroscopy. Also, we used a probe station, in order to measure the electrical properties such as sheet resistance, resistivity, mobility of OS. We believe our method (TPIE) is a powerful bottom-up approach to synthesize and modify carbon-based nanostructures.

  • PDF

Properties of ZnO:Ga Transparent Conducting Film Fabricated on O2 Plasma-Treated Polyethylene Naphthalate Substrate (산소플라즈마 전처리된 Polyethylene Naphthalate 기판 위에 증착된 ZnO:Ga 투명전도막의 특성)

  • Kim, Byeong-Guk;Kim, Jeong-Yeon;Oh, Byoung-Jin;Lim, Dong-Gun;Park, Jae-Hwan;Woo, Duck-Hyun;Kweon, Soon-Yong
    • Korean Journal of Materials Research
    • /
    • v.20 no.4
    • /
    • pp.175-180
    • /
    • 2010
  • Transparent conducting oxide (TCO) films are widely used for optoelectronic applications. Among TCO materials, zinc oxide (ZnO) has been studied extensively for its high optical transmission and electrical conduction. In this study, the effects of $O_2$ plasma pretreatment on the properties of Ga-doped ZnO films (GZO) on polyethylene naphthalate (PEN) substrate were studied. The $O_2$ plasma pretreatment process was used instead of conventional oxide buffer layers. The $O_2$ plasma treatment process has several merits compared with the oxide buffer layer treatment, especially on a mass production scale. In this process, an additional sputtering system for oxide composition is not needed and the plasma treatment process is easily adopted as an in-line process. GZO films were fabricated by RF magnetron sputtering process. To improve surface energy and adhesion between the PEN substrate and the GZO film, the $O_2$ plasma pre-treatment process was used prior to GZO sputtering. As the RF power and the treatment time increased, the contact angle decreased and the RMS surface roughness increased significantly. It is believed that the surface energy and adhesive force of the polymer surfaces increased with the $O_2$ plasma treatment and that the crystallinity and grain size of the GZO films increased. When the RF power was 100W and the treatment time was 120 sec in the $O_2$ plasma pretreatment process, the resistivity of the GZO films on the PEN substrate was $1.05\;{\times}\;10^{-3}{\Omega}-cm$, which is an appropriate range for most optoelectronic applications.

Radiation Damage Mechanism of the Small Intestine's Absorptive Epithelium and Radioprotection Effect after Propolis Abdominal Cavity Injection (프로폴리스 복강 주사 후 소장 흡수상피조직의 방사선 손상 기전과 방어효과)

  • Ji, Tae-Jeong;Lee, Sang-Hun
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.7
    • /
    • pp.297-304
    • /
    • 2010
  • As Small Intestine Absorptive Epithelium Cells are surrounded by mucus polysaccharide and lymphocytes and mitochondria, they are sensitive to radiation energy. Damaged cells lead to a deficiency of nutrients and the imbalance of electrolyte metabolism, which in turn can becomes a major cause of an intestine tract death. This research observed ultra structures after injecting propolis into the abdominal cavity in order to reveal the radiation damage mechanism and radioprotection effect of intestine absorptive epithelium cells. The result of this research's observation found that stenosis occurred in the small intestine in some tissues 20 days after 5Gy irradiation, their surface turned black, and their elasticity dropped. Through observation with an optical microscope, it was found that the size of the goblet cells decreased, while the paneth granulate cells atrophied and were vacuolated. Observation with an transmission electron microscope(TEM) revealed that while microvill and lysosome were normally observed in jejunum tissues, mitochondria membrane was damaged and uneven surfaces were formed on lymphocytes. The membrane of absorptive epithelium cells hypertrophied in tissues of the ileum, and vacuole was observed. However, the observation after injecting propolis into the abdominal cavity found that mitochondria damage dropped dramatically, and radioprotection effects were to some extent confirmed, considering that glycocalyx of villi was clear, and M cells could be observed.

An Efficient IPTV Distribution Network by Packet Transport System (Packet Transport System에 의한 효율적인 IPTV 분배망 구축 방안)

  • Jang, Jin-Hee;Park, Seung-Kwon;Roh, Jin-Young;Noh, Francis Tai
    • Journal of Broadcast Engineering
    • /
    • v.12 no.2
    • /
    • pp.80-92
    • /
    • 2007
  • IPTV Services that is representative union service of broadcasting and telecommunication need guarantee of QoS, efficiency of multicasting, and hish bandwidth on the network. Because typical TDM based metro transport network was designed by transporting fixed voice traffic with stable and recovering method, it has a defect of bottleneck and a waste of bandwidth for acceptance of data traffic with burst feature and then all of data are treated equally at the transport network because it cannot classify between advanced high end service and best effort low end service. for completely resolving this kind of problem about increasing burst traffic and QoS issues, firstly we need to new design for transport network. This paper presents transformation method from TDM based metro transport network to packet based transport network and advantage and effectiveness of packet based transport network and also indicates technical factor and characters about method of packet transport system. As a result of research, the Packet Transport System, which is a transmission network for packet delivery, take in not only a specific character of legacy TDM but QoS, Multicast and high bandwidth, then, it is able to keep an effective bandwidth and a stabilized performance of packet transmissions. Additionally, if a fault be occurred on an optical link, the system is able to guarantee a differential QoS by an each service class using an algorithm to make certain of a traffic existence and contain a protective mechanism.

Characteristics of Workers' Exposure to Aerosolized Particles during the Production of Carbon Nanotube-enabled Composites (탄소나노튜브 복합체 취급 작업자의 공기 중 입자상 물질 노출 특성)

  • Kwon, Jiwoon;Kim, Sungho;Jang, Miyeon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • Objectives: The purpose of this case study is to assess workers' exposure to carbon nanotubes(CNTs) and characterize particles aerosolized during the process of producing CNT-enabled polytetrafuoroethylene(PTFE) composites at a worksite in Korea. Methods: Personal breathing zone and area samples were collected for determining respirable concentrations of elemental carbon(EC) using NIOSH(National Institute for Occupational Safety and Health) Method 5040. Personal exposure to nano-sized particles was measured as the number concentration and mean diameter using personal ultrafine particle monitors. The number concentration by particle size was measured using optical particle sizers(OPS) and scanning mobility particle sizers(SMPS). Transmission electron microscopy (TEM) area samples were collected on TEM grids and analyzed to characterize the size, morphology, and chemistry of the particles. Results: Respirable EC concentrations ranged from 0.04 to 0.24 ㎍/㎥, which were below 23% of the exposure limit recommended by NIOSH and lower than background concentrations. Number concentrations by particle size measured using OPS and SMPS were not noticeably elevated during CNT-PTFE composite work. Instant increase of number concentrations of nano-sized particles was observed during manual sanding of CNT-PTFE composites. Both number concentrations and mean diameters did not show a statistically significant difference between workers handing CNT-added and not-added materials. TEM analyses revealed the emission of free-standing CNTs and CNT-PTFE aggregate particles from the powder supply task and composite particles embedded with CNTs from the computer numerical control(CNC) machining task with more than tens of micrometers in diameter. No free-standing CNT particles were observed from the CNC machining task. Conclusions: Significant worker exposure to respirable CNTs was not found, but the aerosolization of CNTs and CNT-embedded composite particles were observed during handing of CNT-PTFE powders and CNC machining of CNT-PTFE composites. Considering the limited knowledge on the toxicity of CNTs and CNT composite particles to date, it seems prudent to take a precautionary approach for the protection of workers' health.