• Title/Summary/Keyword: optical shape

Search Result 1,094, Processing Time 0.04 seconds

Fabrication of polymer tip on an optical fiber end-face by guided UV light (도파된 UV 빛에 의한 광섬유 단면의 폴리머 팁 제작)

  • Park, Min-Gyu;Jeong, Ho-Jung;O, Gyeong-Hwan
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2009.02a
    • /
    • pp.147-148
    • /
    • 2009
  • We have fabricated a down tapered polymer tip on optical fiber end-face by a guided UV light. One side of fiber was aligned with a mercury-xenon lamp and another was put into UV curable polymer. A shape of tip was controlled by adjusting an irradiance of lamp and time of exposure. A bending effect also affects the result. Optical characteristic was achieved preliminarily with solution of minute particles.

  • PDF

CO2 Laser Assisted Fabrication of Micro-lensed Single-mode Optical Fiber

  • Choi, Hun-Kook;Yoo, Dongyoon;Sohn, Ik-Bu;Noh, Young-Chul;Sung, Jae-Hee;Lee, Seong-Ku;Jeong, Tae-Moon;Ahsan, Md. Shamim;Kim, Jin-Tae
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.327-333
    • /
    • 2015
  • This paper reports the fabrication of various micro-lensed single-mode optical fibers through the use of an enhanced peak power $CO_2$ laser beam. The end faces of the optical fibers are exposed to the $CO_2$ laser beam to form convex, concave, and conical shape optical fiber tips. Peak power of the $CO_2$ laser beam was varied from 0.8 W to 1.5 W depending on the shape of the optical fiber tip. We also discover the dependence of the angle of the optical fiber tip on the rotation angle and the number of $CO_2$ laser irradiations. The angle shows an increasing trend with both these parameters. We achieve a wide range of lenticular fibers with end face angle varying from $4.47^{\circ}$ to $8.13^{\circ}$. Furthermore, we investigate the emission pattern of light from the developed micro-lensed fibers. The proposed $CO_2$ laser based optical fiber reshaping technique shows great consistency, and thus is suitable for commercial applications.

Development of Optical Head Unit for Nano Optical Probe Array (나노 광 프로브 어레이 구현을 위한 광학 헤드 유닛 개발)

  • Kim H.;Lim J.;Kim S.;Han J.;Kang S.
    • Transactions of Materials Processing
    • /
    • v.15 no.1 s.82
    • /
    • pp.21-26
    • /
    • 2006
  • A optical head unit for nano optical probe array was developed. The optical probe array is generated by Talbot effect. The shape and thickness of microlens array(MLA) were designed to minimize the spot size at the foci of MLA. To increase the optical efficiency of the system and obtain the large tolerance for fabrication, aperture size was theoretically optimized. Then microlens illuminated aperture array(MLIAA) as an optical head unit was fabricated using a ultra violet(UV) molding process on aluminum aperture array. In this process, Al aperture array was fabricated separately using the photolithography and reactive ion etching(RIE) process. Optical properties of the generated optical probes were measured and compared at Talbot distance from the aperture array having a diameter of $1{\mu}m$ and MLIAA.

A Study on the Performance of Optical Fiber Displacement Sensor for Monitoring High Speed Spindle according to Properties of Optical Fiber (고속주축 모니터링용 광파이버 변위센서의 파이버 특성에 따른 센서 성능 연구)

  • 박찬규;신우철;배완성;홍준희;이동주
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.385-389
    • /
    • 2003
  • To make high speed spindle system work properly, sensors with outstanding resolution and dynamic characteristics are essential. An optical fiber displacement sensor is based on simple principles. Electrical signal responds to the optical flux change due to the displacement change between a target and a sensor probe. In this paper, the performance of optical fiber displacement sensor has been investigated according to properties of optical fiber Firstly, optical loss has been measured before and after polishing optical fiber endface. Secondly, allowance of optical fiber bending has been tested. thirdly sensitivity and linear range of the sensor has been found out according to the shape of cross section of optical fiber.

  • PDF

Development of Optical Head Unit for Nano Optical Probe Array (나노 광 프로브 어레이 구현을 위한 광학 헤드 유닛 개발)

  • Kim H.;Lim J.;Kim S.;Han J.;Kang S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.09a
    • /
    • pp.29-34
    • /
    • 2005
  • A optical head unit for nano optical probe away was developed. The optical probe array is generated by Talbot effect. The shape and thickness of microlens array(MLA) were designed to minimize the spot size at the foci of MLA. To increase the optical efficiency of the system and obtain the large tolerance for fabrication, aperture size was theoretically optimized. Then microlens illuminated aperture array(MLIAA) as an optical head unit was fabricated using a ultra violet(UV) molding process on aluminum aperture array. In this process, Al aperture array was fabricated separately using the photolithography and reactive ion etching(RIE) process. Optical properties of the generated optical probes were measured and compared at Talbot distance from the aperture array having a diameter of $1{\mu}m$ and MLIAA.

  • PDF

Phase calcuation error analysis of 3D shape measurement system using phase-shifted fringe projection method (위상이동 간섭무늬 투영을 이용한 3차원 형상측정 시스템의 위상계산오차 해석)

  • 류현미;김석성;홍석경;연규황
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.3
    • /
    • pp.182-188
    • /
    • 2002
  • We have analyzed the phase-calculation-error of a three-dimensional shape measurement system using the projection of phase shifted fringe patterns. In this study, we have dealt various errors; an error caused by the variation of quantization levels, an error caused by the defocus of fringe pattern projected images, an error caused by phase-shifting errors, an error caused by the intensity variation of the background and modulation amplitude of fringe pattern projected images during the projection of multiple patterns, an error caused by the distortion of sinusoidal shape of a fringe pattern. The results will contribute to the design of a three-dimensional shape measurment system and give an important meaning to the calculation and the analysis of the accuracy of a system.

Smart Honeycomb Sandwich Panels With Damage Detection and Shape Recovery Functions

  • Okabe, Yoji;Minakuchi, Shu;Shiraishi, Nobuo;Murakami, Ken;Takeda, Nobuo
    • Advanced Composite Materials
    • /
    • v.17 no.1
    • /
    • pp.41-56
    • /
    • 2008
  • In this research, optical fiber sensors and shape memory alloys (SMA) were incorporated into sandwich panels for development of a smart honeycomb sandwich structure with damage detection and shape recovery functions. First, small-diameter fiber Bragg grating (FBG) sensors were embedded in the adhesive layer between a CFRP face-sheet and an aluminum honeycomb core. From the change in the reflection spectrum of the FBG sensors, the debonding between the face-sheet and the core and the deformation of the face-sheet due to impact loading could be well detected. Then, the authors developed the SMA honeycomb core and bonded CFRP face-sheets to the core. When an impact load was applied to the panel, the cell walls of the core were buckled and the face-sheet was bent. However, after the panel was heated over the reverse transformation finish temperature of the SMA, the core buckling disappeared and the deflection of the face-sheet was relieved. Hence the bending stiffness of the panel could be recovered.

Laser Phase Noise to Electronic Phase Noise Conversion in Optical Links Comprising Optical Resonators

  • Wang, Ziye;Yang, Chun;Xu, Weijie
    • Current Optics and Photonics
    • /
    • v.2 no.5
    • /
    • pp.395-399
    • /
    • 2018
  • This article investigates the mechanism of electronic signal phase noise degradation induced by laser phase noise in optical links comprising optical resonators. Through theoretical derivation, we find that the phase noise of the output electronic signal has the same spectral shape of optical intensity noise as the output of the optical resonator. We propose that the optical resonator transfers laser phase noise to light intensity fluctuation and then the intensity fluctuation is converted to electric phase noise through AM-PM conversion mechanism in the photodiode. An optical link comprising a Fabry-Perot resonator was constructed to verify the proposed mechanism. The experimental results agree with our theoretical prediction verifying that the supposition is correct.

Assessment of Gradient-based Digital Speckle Correlation Measurement Errors

  • Jian, Zhao;Dong, Zhao;Zhe, Zhang
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.372-380
    • /
    • 2012
  • The optical method Digital Speckle Correlation Measurement (DSCM) has been extensively applied due its capability to measure the entire displacement field over a body surface. A formula of displacement measurement errors by the gradient-based DSCM method was derived. The errors were found to explicitly relate to the image grayscale errors consisting of sub-pixel interpolation algorithm errors, image noise, and subset deformation mismatch at each point of the subset. A power-law dependence of the standard deviation of displacement measurement errors on the subset size was established when the subset deformation was rigid body translation and random image noise was dominant and it was confirmed by both the numerical and experimental results. In a gradient-based algorithm the basic assumption is rigid body translation of the interrogated subsets, however, this is in contradiction to the real circumstances where strains exist. Numerical and experimental results also indicated that, subset shape function mismatch was dominant when the order of the assumed subset shape function was lower than that of the actual subset deformation field and the power-law dependence clearly broke down. The power-law relationship further leads to a simple criterion for choosing a suitable subset size, image quality, sub-pixel algorithm, and subset shape function for DSCM.

Simulation Analysis of Bio-Methane Decomposition Using Solar Thermal Energy (태양열 이용 바이오메탄 분해 해석연구)

  • Kim, Haneol;Lee, Sangnam;Lee, Sang Jik;Kim, Jongkyu
    • New & Renewable Energy
    • /
    • v.17 no.1
    • /
    • pp.40-49
    • /
    • 2021
  • In this study, the optical properties, heat transfer capabilities and chemical reaction performance of a methane thermal decomposition reactor using solar heat as a heat source were numerically analyzed on the basis of the cavity shape. The optical properties were analyzed using TracePro, a Monte Carlo ray tracing-based program, and the heat transfer analysis was performed using Fluent, a CFD program. An indirect heating tubular reactor was rotated at a constant speed to prevent damage by the heat source in the solar furnace. The inside of the reactor was filled with a porous catalyst for methane decomposition, and the outside was insulated to reduce heat loss. The performance of the reactor, based on cavity shape, was calculated when solar heat was concentrated on the reactor surface and methane was supplied into the reactor in an environment with a solar irradiance of 700 W/㎡, a wind speed of 1 m/s, and an outdoor temperature of 25℃. Thus, it was confirmed that the heat loss of the full-cavity model decreased to 13% and the methane conversion rate increased by 33.5% when compared to the semi-cavity model.