• Title/Summary/Keyword: optical sensors

Search Result 1,135, Processing Time 0.027 seconds

Optimization of vertical SOI slot optical waveguide with confinement factor and sensitivity for integrated-optical biochemical sensors (구속계수와 감지도에 기반한 집적광학 바이오케미컬 센서에 적합한 수직 SOI 슬롯 광 도파로 최적화)

  • Jung, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.131-138
    • /
    • 2021
  • The optimization of the specifications of vertical silicon on insulator (SOI) slot optical waveguides suitable for integrated-optical biochemical sensors was performed through computational analysis of the confinement factor of the guided mode distributed in the slot in addition to analytical examination of the TE mode. The optimized specifications were confirmed based on sensitivity in terms of the change in the refractive index of the biochemical analyte. When the slot width, rail width, and height were set to 120 nm, 200 nm, and 320 nm, respectively, the confinement factor was evaluated to be about 56% and the sensitivity was at least 0.9 [RIU/nm].

A Study on the Remote Detection of a Hydraulic Cylinder Stroke Using Optical Fiber Sensors (광파이버센서를 이용한 유압실린더 스트로크의 원격 검출에 관한 연구)

  • 김인환;김종화
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.191-198
    • /
    • 2001
  • In order to comprise a basic closed-loop control system for hydraulic systems it is necessary to detect the piston rod stroke of a hydraulic cylinder. There are many conventional type sensors which can detect the displacement of cylinders. However, they cannot reveal the original performance normally or they cannot be applied at all where the operating circumstance of cylinders is beyond specifications of sensors. Especially, for the purpose of detecting the strokes of cylinders mounted on heavy equipments, a special exclusive sensor must be used because the operating circumstances of heavy equipments are so severe that general purpose sensors cannot endure such circumstance as shock and a residual vibration induced by rough works. In this paper, an exclusive method for detecting the piston rod stroke for heavy equipments is suggested, which adopts a remote detecting technique using optical fiber sensors. Several experiments using the prototype are executed for verifying the effectiveness of the suggested method and the possibility of the accurate detection of stroke.

  • PDF

PET Detector Design with a Small Number of Photo Sensors (적은 수의 광센서를 사용한 PET 검출기 설계)

  • Lee, Seung-Jae;Baek, Cheol-Ha
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.4
    • /
    • pp.525-531
    • /
    • 2021
  • The detector of the positron emission tomography (PET) is composed using a plurality of scintillation pixels and photo sensors. The use of multiple photo sensors increases cost and complicates signal processing. In this study, a detector with reduced cost and simple signal processing was designed using a small number of photo sensors. A scintillation pixel and a small number of photo sensors were used, and a optical guide was used to deliver light to all the photo sensors. A reflector is applied to the scintillation pixel and the optical guide to transmit the maximum amount of light to the photo sensor. A diffuse reflector and a specular reflector were used for the reflector, and a flood image was obtained by applying different thicknesses of the optical guide. An optimal combination was selected through comparative analysis of the acquired flood images. As a result, when specular reflectors were used for both the scintillation pixel and the optical guide, excellent flood images were obtained from optical guides of all thicknesses. For the optical guide, the optimal image was obtained when using a 3 mm thickness in consideration of the size of the image and the analysis of the point where the image of the scintillation pixel was formed.

An implementation of fiber-optic sensors for impulse voltage and current measurement using a BSO and an YIG (BSO와 YIG를 이용한 임펄스 전압, 전류 측정용 광센서 구현)

  • 송재성;김영수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.8
    • /
    • pp.688-693
    • /
    • 2000
  • In this paper an optical voltage sensor and an optical current sensor which can be used for the measurement of impulse voltage and current are implemented. BSO single crystal is utilized as a voltage sensor(Pockels effect cell). An rare earth doped YIG is used as a current sensor(Faraday effect cell). A new signal processing technique is adopted not only to avoid the influences o external optical fiber pertubations of transmitting optical fiber but also to improves the frequency response characteristics of the fiber-optic voltage and current sensors. Experimental results show that optical voltage sensor has maximum 2.5% error within the voltage range from 0V to 500V. and optical current sensor has maximum 2.5% error within the current range and that of optical current sensor is about 1.5% within temperature range from -2$0^{\circ}C$ to 6$0^{\circ}C$. The proposed optical sensors have good frequency response characteristics within the frequency range from DC to 10MHz.

  • PDF

Common Optical System for the Fusion of Three-dimensional Images and Infrared Images

  • Kim, Duck-Lae;Jung, Bo Hee;Kong, Hyun-Bae;Ok, Chang-Min;Lee, Seung-Tae
    • Current Optics and Photonics
    • /
    • v.3 no.1
    • /
    • pp.8-15
    • /
    • 2019
  • We describe a common optical system that merges a LADAR system, which generates a point cloud, and a more traditional imaging system operating in the LWIR, which generates image data. The optimum diameter of the entrance pupil was determined by analysis of detection ranges of the LADAR sensor, and the result was applied to design a common optical system using LADAR sensors and LWIR sensors; the performance of these sensors was then evaluated. The minimum detectable signal of the $128{\times}128-pixel$ LADAR detector was calculated as 20.5 nW. The detection range of the LADAR optical system was calculated to be 1,000 m, and according to the results, the optimum diameter of the entrance pupil was determined to be 15.7 cm. The modulation transfer function (MTF) in relation to the diffraction limit of the designed common optical system was analyzed and, according to the results, the MTF of the LADAR optical system was 98.8% at the spatial frequency of 5 cycles per millimeter, while that of the LWIR optical system was 92.4% at the spatial frequency of 29 cycles per millimeter. The detection, recognition, and identification distances of the LWIR optical system were determined to be 5.12, 2.82, and 1.96 km, respectively.

Nano-porous Silicon Microcavity Sensors for Determination of Organic Fuel Mixtures

  • Pham, Van Hoi;Bui, Huy;Hoang, Le Ha;Nguyen, Thuy Van;Nguyen, The Anh;Pham, Thanh Son;Ngo, Quang Minh
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.423-427
    • /
    • 2013
  • We present the preparation and characteristics of liquid-phase sensors based on nano-porous silicon multilayer structures for determination of organic content in gasoline. The principle of the sensor is a determination of the cavity-resonant wavelength shift caused by refractive index change of the nano-porous silicon multilayer cavity due to the interaction with liquids. We use the transfer matrix method (TMM) for the design and prediction of characteristics of microcavity sensors based on nano-porous silicon multilayer structures. The preparation process of the nano-porous silicon microcavity is based on electrochemical etching of single-crystal silicon substrates, which can exactly control the porosity and thickness of the porous silicon layers. The basic characteristics of sensors obtained by experimental measurements of the different liquids with known refractive indices are in good agreement with simulation calculations. The reversibility of liquid-phase sensors is confirmed by fast complete evaporation of organic solvents using a low vacuum pump. The nano-porous silicon microcavity sensors can be used to determine different kinds of organic fuel mixtures such as bio-fuel (E5), A92 added ethanol and methanol of different concentrations up to 15%.

Online Strain Measurement at Multiple Points on a Rotating Blade with Fiber Bragg Grating Sensors and a Rotary Optical Coupler (광섬유 격자 센서와 회전 광학 커플러를 사용한 회전하는 블레이드 여러 지점에서의 온라인 변형률 측정)

  • Lee, Jong-Min;Hwang, Yo-Ha
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.1
    • /
    • pp.77-82
    • /
    • 2008
  • Strain-gauges have been dominantly used to measure strain at various points on a rotor, however, either a slip ring or telemetry has to be used to send sensor signals to data acquisition instruments at stationary side. Both slip ring and telemetry have numerous inherent problems which force severe limitations in real applications. This paper introduces a new rotor condition monitoring system using FBG(Fiber Bragg Grating) sensors and a rotary optical coupler. A single optical fiber with many FBG sensors is installed on the rotor and an optical dynamic interrogator is installed at stationary side. The sensor signal connection between rotating part and stationary part is made by the rotary optical coupling method which makes use of light's unique characteristic-light travels through space. Broad band light source from the interrogator travels to the optical fiber on the rotor and reflected FBG sensor signals travel back to the optical fiber on stationary side and are connected to the interrogator. Rotary optical coupler's insertion loss change due to rotation is compensated by using a reference sensor installed at the center of the rotor. The proposed system's performance has been successfully demonstrated by accurately measuring strains at 5 points on a blade rotating at high speed.

In-Situ Optical Monitoring of Electrochemical Copper Deposition Process for Semiconductor Interconnection Technology

  • Hong, Sang-Jeen;Wang, Li;Seo, Dong-Sun;Yoon, Tae-Sik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.2
    • /
    • pp.78-84
    • /
    • 2012
  • An in-situ optical monitoring method for real-time process monitoring of electrochemical copper deposition (CED) is presented. Process variables to be controlled in achieving desired process results are numerous in the CED process, and the importance of the chemical bath conditions cannot be overemphasized for a successful process. Conventional monitoring of the chemical solution for CED relies on the pH value of the solution, electrical voltage level for the reduction of metal cations, and gravity measurement by immersing sensors into a plating bath. We propose a nonintrusive optical monitoring technique using three types of optical sensors such as chromatic sensors and UV/VIS spectroscopy sensors as potential candidates as a feasible optical monitoring method. By monitoring the color of the plating solution in the bath, we revealed that optically acquired information is strongly related to the thickness of the deposited copper on the wafers, and that the chromatic information is inversely proportional to the ratio of $Cu$ (111) and {$Cu$ (111)+$Cu$ (200)}, which can used to measure the quality of the chemical solution for electrochemical copper deposition in advanced interconnection technology.

Analytic Formulation of Transmission Light Intensity of Hole Blockers in Intensity-based Polymer Optical Fiber Sensors

  • Kwon, Il-Bum;Kim, Chi-Yeop;Shim, Chan-Wook;Hwang, Du-Sun;Chung, Yung-Joo
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.221-225
    • /
    • 2011
  • Intensity-based optical fiber sensors are devised using a blocker which is located between two polymer optical fibers(POFs), one fiber is light-in and the other is light-out. This blocker is moved by an external displacement. Therefore, finding a general formulation of the relation between this displacement and transmission light intensity of various blockers is important to help develop intensity-based optical fiber sensors. In this paper, we consider blockers with arbitrary shapes from circular holes to inclined angled blockers. The transmission light intensities of such blockers should be determined by this generalized equation. In order to verify this equation, the calculated intensities of the blockers are compared with the values acquired from experiment. In the comparison, it is shown that the analytic equation can give the exact values of the transmitted light intensities for the assorted blockers. The range of the displacement measurement is also shown to be about 6 times of the radius of the hole in the case of a 9 degree inclined angle blocker.