• 제목/요약/키워드: optical sensors

검색결과 1,135건 처리시간 0.037초

왕겨를 통한 실리카 나노스페어의 제작과 특성 (Fabrication and property of silica nanospheres via rice-husk)

  • 임유빈;곽도환;;이현철;김영순;양오봉;신형식
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.619-619
    • /
    • 2009
  • Recently, silica nanostructures are widely used in various applicationary areas such as chemical sensors, biosensors, nano-fillers, markers, catalysts, and as a substrate for quantum dots etc, because of their excellent physical, chemical and optical properties. Additionally, these days, semiconductor silica and silicon with high purity is a key challenge because of their metallurgical grade silicon (MG-Si) exhibit purity of about 99% produced by an arc discharge method with high cast. Tremendous efforts are being paid towards this direction to reduce the cast of high purity silicon for generation of photovoltaic power as a solar cell. In this direction, which contains a small amount of impurities, which can be further purified by acid leaching process. In this regard, initially the low cast rice-husk was cultivated from local rice field and washed well with high purity distilled water and were treated with acid leaching process (1:10 HCl and $H_2O$) to remove the atmospheric dirt and impurity. The acid treated rice-husk was again washed with distilled water and dried in an oven at $60^{\circ}C$. The dried rice-husk was further annealed at different temperatures (620 and $900^{\circ}C$) for the formation of silica nanospheres. The confirmation of silica was observed by the X-ray diffraction pattern and X-ray photoelectron spectroscopy. The morphology of obtained nanostructures were analyzed via Field-emission scanning electron microscope(FE-SEM) and Transmission electron microscopy(TEM) and it reveals that the size of each nanosphares is about 50-60nm. Using the Inductively coupled plasma mass spectrometry(ICP-MS), Silica was analyzed for the amount of impurities.

  • PDF

Novel Water-Soluble Polyfluorenes as an Interfacial layer leading to Cathodes-Independent High Performance of Organic Solar Cells

  • 오승환;심희상;박동원;정연길;이재광;문승현;김동유
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.394-394
    • /
    • 2009
  • Water solubility of conjugated polymers may offer many applications. Potential applications of water-soluble conjugated polymers include the polymer light-emitting diode and new materials for nano and micro hollow-capsules, and bio- or chemo-sensors. We synthesized neutral polyfluorenes containing bromo-alkyl groups by the palladium catalyzed Suzuki coupling reaction. Bromo-alkyl side groups in neutral polyfluorenes were quaternized by tri-methyl amine solution. The electrochemical and optical properties of water-soluble conjugated polymers are discussed. This novel synthesized water-soluble conjugated polymers were used as a interfacial dipole layer between active layer and metal cathode in polymer solar cell for enhancement of open-circuit voltage (Voc), which is one of the most critical factors in determining device characteristics. We also investigated the device performance of polymer solar cell with different metal cathode such as Al, Ag, Au and Cu. In polymer solar cell, novel cationic water-soluble conjugated polymers were inserted between active layer and high-work function cathode (Al, Ag, Au and Cu).

  • PDF

누름가공과 AAO 공정을 이용한 나노-마이크로 복합패턴 제작방법 연구 (A Study on Manufacturing Method of Nano-Micro Hybrid Pattern Using Indentation Machining Method and AAO Process)

  • 김한희;전은채;최대희;장웅기;박용민;제태진;최두선;김병희;서영호
    • 한국정밀공학회지
    • /
    • 제32권1호
    • /
    • pp.63-68
    • /
    • 2015
  • Micro/nano patterns for optical concentration and diffusion have been studied in the various fields such as displays, optics, and sensors. Conventional micro patterns were continuous and linear shapes due to using linear-type light sources, however, recently non-continuous patterns have been applied as point sources are used for dot-type light sources such as LEDs and OLEDs. In this study, a hybrid machining technology combining an indentation machining method and an AAO process was developed for manufacturing the non-continuous micro patterns having nano patterns. First, mirror-like surfaces ($R_a<20nm$) of pure Aluminum substrates were obtained by optimizing cutting conditions. Then, The letter of 'K' consisting of the arrays of the micro patterns was manufactured by the indentation machining method which has a similar principle to indentation hardness testing. Finally, nano patterns were machined by AAO process on the micro patterns. Conclusively, a specific letter having nano-micro hybrid patterns was manufactured in this study.

Transparent and Flexible All-Organic Multi-Functional Sensing Devices Based on Field-effect Transistor Structure

  • Trung, Tran Quang;Tien, Nguyen Thanh;Seol, Young-Gug;Lee, Nae-Eung
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.491-491
    • /
    • 2011
  • Transparent and flexible electronic devices that are light-weight, unbreakable, low power consumption, optically transparent, and mechanical flexible possibly have great potential in new applications of digital gadgets. Potential applications include transparent displays, heads-up display, sensor, and artificial skin. Recent reports on transparent and flexible field-effect transistors (tf-FETs) have focused on improving mechanical properties, optical transmittance, and performances. Most of tf-FET devices were fabricated with transparent oxide semiconductors which mechanical flexibility is limited. And, there have been no reports of transparent and flexible all-organic tf-FETs fabricated with organic semiconductor channel, gate dielectric, gate electrode, source/drain electrode, and encapsulation for sensor applications. We present the first demonstration of transparent, flexible all-organic sensor based on multifunctional organic FETs with organic semiconductor channel, gate dielectric, and electrodes having a capability of sensing infrared (IR) radiation and mechanical strain. The key component of our device design is to integrate the poly(vinylidene fluoride-triflouroethylene) (P(VDF-TrFE) co-polymer directly into transparent and flexible OFETs as a multi-functional dielectric layer, which has both piezoelectric and pyroelectric properties. The P(VDF-TrFE) co-polumer gate dielectric has a high sensitivity to the wavelength regime over 800 nm. In particular, wavelength variations of P(VDF-TrFE) molecules coincide with wavelength range of IR radiation from human body (7000 nm ~14000 nm) so that the devices are highly sensitive with IR radiation of human body. Devices were examined by measuring IR light response at different powers. After that, we continued to measure IR response under various bending radius. AC (alternating current) gate biasing method was used to separate the response of direct pyroelectric gate dielectric and other electrical parameters such as mobility, capacitance, and contact resistance. Experiment results demonstrate that the tf-OTFT with high sensitivity to IR radiation can be applied for IR sensors.

  • PDF

Label-free Femtomolar Detection of Cancer Biomarker by Reduced Graphene Oxide Field-effect Transistor

  • Kim, Duck-Jin;Sohn, Il-Yung;Jung, Jin-Heak;Yoon, Ok-Ja;Lee, N.E.;Park, Joon-Shik
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.549-549
    • /
    • 2012
  • Early detection of cancer biomarkers in the blood is of vital importance for reducing the mortality and morbidity in a number of cancers. From this point of view, immunosensors based on nanowire (NW) and carbon nanotube (CNT) field-effect transistors (FETs) that allow the ultra-sensitive, highly specific, and label-free electrical detection of biomarkers received much attention. Nevertheless 1D nano-FET biosensors showed high performance, several challenges remain to be resolved for the uncomplicated, reproducible, low-cost and high-throughput nanofabrication. Recently, two-dimensional (2D) graphene and reduced GO (RGO) nanosheets or films find widespread applications such as clean energy storage and conversion devices, optical detector, field-effect transistors, electromechanical resonators, and chemical & biological sensors. In particular, the graphene- and RGO-FETs devices are very promising for sensing applications because of advantages including large detection area, low noise level in solution, ease of fabrication, and the high sensitivity to ions and biomolecules comparable to 1D nano-FETs. Even though a limited number of biosensor applications including chemical vapor deposition (CVD) grown graphene film for DNA detection, single-layer graphene for protein detection and single-layer graphene or solution-processed RGO film for cell monitoring have been reported, development of facile fabrication methods and full understanding of sensing mechanism are still lacking. Furthermore, there have been no reports on demonstration of ultrasensitive electrical detection of a cancer biomarker using the graphene- or RGO-FET. Here we describe scalable and facile fabrication of reduced graphene oxide FET (RGO-FET) with the capability of label-free, ultrasensitive electrical detection of a cancer biomarker, prostate specific antigen/${\alpha}$ 1-antichymotrypsin (PSA-ACT) complex, in which the ultrathin RGO channel was formed by a uniform self-assembly of two-dimensional RGO nanosheets, and also we will discuss about the immunosensing mechanism.

  • PDF

Structural Evolution of ZnO:Ga Thin Film on Profiled Substrate Grown by Radio Frequency Sputtering

  • Sun, J.H.;Kim, J.H.;Ahn, B.G.;Park, S.Y.;Jung, E.J.;Lee, J.H.;Kang, H.C.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.72-72
    • /
    • 2011
  • Recently, Zinc oxide (ZnO) nano-structures have been received attractive attention because of their outstanding optical and electrical properties. It might be a promising material considered for applications to photonic and electronic devices such as ultraviolet light emitting diode, thin film transistor, and gas sensors. ZnO nano-structures can be typically synthesized by the VLS growth mode and self-assembly. In the VLS growth mode using various growth techniques, the noble metal catalysts such as Au and Sn were used. However, the growth of ZnO nano-structures on nano-crystalline Au seeds using radio frequency (RF) magnetron sputtering might be explained by the profile coating, i.e. the ZnO nano-structures were a morphological replica of Au seeds. Ga doped ZnO (ZnO:Ga) nano-structures using this concept were synthesized and characterized by XRD, AFM, SEM, and TEM. We found that surface morphology is drastically changed from initial islands to later sun-flower typed nano-structures. We will present the structural evolution of ZnO:Ga nano-structures with increasing the film thickness.

  • PDF

Effects of Electromagnetic Heating on Quick Freezing

  • Kim, Jinse;Park, Jong Woo;Park, Seokho;Choi, Dong Soo;Choi, Seung Ryul;Kim, Yong Hoon;Lee, Soo Jang;Yoo, Seon Mi;Han, Gui Jeung
    • Journal of Biosystems Engineering
    • /
    • 제40권3호
    • /
    • pp.271-276
    • /
    • 2015
  • Purpose: Quick freezing is widely used in commercial food storage. Well-known freezing techniques such as individual quick freezing require a low-temperature coolant and small cuts for the heat-transfer efficiency. However, the freezing method for bulk food resembles techniques used in the 1970s. In this study, electromagnetic (EM) heating was applied to improve the quick freezing of bulk food. Methods: During freezing, the surface of food can be rapidly cooled by an outside coolant, but the inner parts of the food cool slowly owing to the latent heat from the phase change. EM waves can directly heat the inner parts of food to prevent it from freezing until the outer parts finish their phase change and are cooled rapidly. The center temperature of garlic cloves was probed with optical thermo sensors while liquid nitrogen (LN) was sprayed. Results: When EM heating was applied, the center cooling time of the garlic cloves from freezing until $-10^{\circ}C$ was 48 s, which was approximately half the value of 85 s obtained without EM heating. For the white radish cubes, the center cooling time was also improved, from 288 to 132 s. The samples frozen by LN spray with EM heating had a closer hardness to the unfrozen samples than the samples frozen by LN only. Conclusions: The EM heating during quick freezing functions to maintain the hardness of fresh food by reducing the freezing time from 0 to $-10^{\circ}C$.

LAPS를 위한 pH 이미지 검출용 격자무늬 광자극 방법 (The Method of Optical Stimulus by Reticle for pH Image Detection using LAPS)

  • 배상곤;강신원;조진호
    • 센서학회지
    • /
    • 제10권6호
    • /
    • pp.317-327
    • /
    • 2001
  • 본 논문에서는 시료가 갖는 pH값의 2차원 분포를 효과적으로 측정하기 위하여, 회전 격자를 이용한 변조 광을 LAPS에 주사함으로써 PH이미지를 검출하는 방법을 제안하였다. 이는 회전 격자를 이용하여 각 픽셀별로 다른 주파수로 변조된 광을 조사하고 이에 따른 광 전류의 주파수 성분별 진폭을 계산함으로써 한 행의 신호 성분을 동시에 측정할 수 있다. 제안된 검출방법을 실험하기 위하여 LAPS의 특성을 고려한 회전격자를 설계 제작하고 제작된 회전 격자와 패턴 영상을 이용한 주파수성분 분석에 의해 이미지를 검출하였다. 실험 결과로부터 회전 격자를 이용한 제안된 검출 방식이 약22-24dB의 PSNR을 가지는 $30{\times}30$화소의 이미지를 기존의 방식보다 30배 빨리 측정할 수 있음을 확인하였다.

  • PDF

시간응답특성을 고려한 2광원 1센서 방식의 capnograph 시스템용 NDIR식 $CO_2$ 가스 챔버 설계 및 측정 회로의 구현 (An implementation of NDIR type $CO_2$ gas sample chamber and measuring hardware for capnograph system in consideration of the time response characteristics)

  • 박일용;이인기;이성기;강경목;강신원;조진호
    • 센서학회지
    • /
    • 제10권5호
    • /
    • pp.279-285
    • /
    • 2001
  • 본 논문에서는 동맥혈중 이산화탄소 분압을 실시간으로 추정하는 capnograph 시스템에 상용되는 대부분 NDIR 흡수식(non-dispersive infrared absorption) 광챔버와 신호처리회로를 설계 및 구현하였다. 광챔버 설계시 일반 정상인의 capnogram을 주파수 분석하여 적합한 광쵸핑 주파수를 결정한 뒤, 이에 근거하여 시간응답을 고려한 광챔버를 설계하였으며, 열잡음에 대한 영향을 줄이기 위해 2광원 1센서 방식의 $CO_2$ 농도 신호처리회로를 구현하였다. 구현된 광챔버에 대한 가스배출시간을 조사하였으며 신호처리회로를 외부 온도 변화 실험에 적용한 결과 2광원 1센서 방식이 안정된 출력 신호를 얻을 수 있음을 확인하였고, 실제 사람의 호흡에 대한 실험결과 정상적인 capnogram 형태의 $CO_2$ 농도 변화 곡선을 보였다.

  • PDF

열광학 폴리머 평면도파로의 소산장결합을 이용한 광섬유형 온도센서 (Fiber optic temperature sensor using evanescent field coupling of the thermo-optic polymer planar waveguide)

  • 김시홍;정웅규;김광택;송재원;강신원
    • 센서학회지
    • /
    • 제9권1호
    • /
    • pp.15-21
    • /
    • 2000
  • 단일모드 광섬유와 평면도파로 결합기의 열에 의하여 공진파장이 이동하는 현상을 이용한 광섬유형 온도센서를 구현하였다. 평면도파로는 열에 의한 굴절률 변화가 큰 열광학폴리머를 사용하였다. 광섬유 연마과정 등의 소자제작 공정을 소개하고, 편광에 무관하게 동작하는 광소자 구조를 실험으로 검증하였다. 제작된 소자의 편광에 따른 공진파장의 차이는 2nm 이하였다. 실온($24^{\circ}C$)에서 $90^{\circ}C$까지의 온도변화에 의한 공진파장의 변화는 $-0.54nm/^{\circ}C$, $-3nm/^{\circ}C$의 특성을 보였다.

  • PDF