• 제목/요약/키워드: optical satellite observation

검색결과 167건 처리시간 0.029초

지구관측용 가시광선 및 적외선 위성센서의 검보정 연구 동향 (Research Trend of Calibration Methods on the Satellite Visible and Infrared Sensors)

  • 진경욱;주광혁;양군호
    • 항공우주산업기술동향
    • /
    • 제7권1호
    • /
    • pp.89-96
    • /
    • 2009
  • 이 논문에서는 지구관측용 가시광선 및 적외선 위성센서의 검보정 방법들을 소개하였다. 먼저 지구관측용으로 쓰이는 위성용 센서들에 대해 간단히 살펴보고, 이들의 검보정 방법들을 정리하였다. 위성센서 중 특히 가시광선 및 적외선 광학센서의 보정장치들을 예로 들어 이들 장치의 원리에 대해서 간략하게 설명함으로써 센서레벨에서 이루어지는 1차적인 보정원리에 중점을 두었다.

  • PDF

Modelling of Aerosol Vertical Distribution during a Spring Season at Gwangju, Korea

  • Shin, Sung-Kyun;Lee, Kwon-Ho
    • Asian Journal of Atmospheric Environment
    • /
    • 제10권1호
    • /
    • pp.13-21
    • /
    • 2016
  • The vertical distributions of aerosol extinction coefficient were estimated using the scaling height retrieved at Gwangju, Korea ($35.23^{\circ}N$, $126.84^{\circ}E$) during a spring season (March to May) of 2009. The aerosol scaling heights were calculated on a basis of the aerosol optical depth (AOD) and the surface visibilities. During the observation period, the scaling heights varied between 3.55 km and 0.39 km. The retrieved vertical profiles of extinction coefficient from these scaling heights were compared with extinction profile derived from the Light Detection and Ranging (LIDAR) observation. The retrieve vertical profiles of aerosol extinction coefficient were categorized into three classes according to the values of AODs and the surface visibilities: (Case I) the AODs and the surface visibilities are measured as both high, (Case II) the AODs and the surface visibilities are both lower, and (Others) the others. The averaged scaling heights for the three cases were $3.09{\pm}0.46km$, $0.82{\pm}0.27km$, and $1.46{\pm}0.57km$, respectively. For Case I, differences between the vertical profile retrieved from the scaling height and the LIDAR observation was highest. Because aerosols in Case I are considered as dust-dominant, uplifted dust above planetary boundary layer (PBL) was influenced this discrepancy. However, for the Case II and other cases, the modelled vertical aerosol extinction profiles from the scaling heights are in good agreement with the results from the LIDAR observation. Although limitation in the current modelling of vertical structure of aerosols exists for aerosol layers above PBL, the results are promising to assess aerosol profile without high-cost instruments.

Precise Orbit Determination Based on the Unscented Transform for Optical Observations

  • Hwang, Hyewon;Lee, Eunji;Park, Sang-Young
    • Journal of Astronomy and Space Sciences
    • /
    • 제36권4호
    • /
    • pp.249-264
    • /
    • 2019
  • In this study, the precise orbit determination (POD) software is developed for optical observation. To improve the performance of the estimation algorithm, a nonlinear batch filter, based on the unscented transform (UT) that overcomes the disadvantages of the least-squares (LS) batch filter, is utilized. The LS and UT batch filter algorithms are verified through numerical simulation analysis using artificial optical measurements. We use the real optical observation data of a low Earth orbit (LEO) satellite, Cryosat-2, observed from optical wide-field patrol network (OWL-Net), to verify the performance of the POD software developed. The effects of light travel time, annual aberration, and diurnal aberration are considered as error models to correct OWL-Net data. As a result of POD, measurement residual and estimated state vector of the LS batch filter converge to the local minimum when the initial orbit error is large or the initial covariance matrix is smaller than the initial error level. However, UT batch filter converges to the global minimum, irrespective of the initial orbit error and the initial covariance matrix.

Optical Monitoring Strategy for Avoiding Collisions of GEO Satellites with Close Approaching IGSO Objects

  • Choi, Jin;Jo, Jung Hyun;Yim, Hong-Suh;Choi, Young-Jun;Park, Maru;Park, Sun-Youp;Bae, Young-Ho;Roh, Dong-Goo;Cho, Sungki;Park, Young-Sik;Jang, Hyun-Jung;Kim, Ji-Hye;Park, Jang-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • 제32권4호
    • /
    • pp.411-417
    • /
    • 2015
  • Several optical monitoring strategies by a ground-based telescope to protect a Geostationary Earth Orbit (GEO) satellite from collisions with close approaching objects were investigated. Geostationary Transfer Orbit (GTO) objects, Inclined GeoSynchronous Orbit (IGSO) objects, and drifted GEO objects forced by natural perturbations are hazardous to operational GEO satellites regarding issues related to close approaches. The status of these objects was analyzed on the basis of their orbital characteristics in Two-Line Element (TLE) data from the Joint Space Operation Center (JSpOC). We confirmed the conjunction probability with all catalogued objects for the domestic operational GEO satellite, Communication, Ocean and Meteorological Satellite (COMS) using the Conjunction Analysis Tools by Analytical Graphics, Inc (AGI). The longitudinal drift rates of GeoSynchronous Orbit (GSO) objects were calculated, with an analytic method and they were confirmed using the Systems Tool Kit by AGI. The required monitoring area was determined from the expected drift duration and inclination of the simulated target. The optical monitoring strategy for the target area was analyzed through the orbit determination accuracy. For this purpose, the close approach of Russian satellite Raduga 1-7 to Korean COMS in 2011 was selected.

A case study of red tide detection around Korean waters using satellite remote sensing

  • Suh, Y.S.;Lee, N.K.;Jang, L.H.;Kim, H.G.;Hwang, J.D.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.654-655
    • /
    • 2003
  • Korea has experienced 10 a Cochlodinium polykrikoides red tide outbreaks during the last 10 years (1993-2002). The monitoring activities at National Fisheries Research and Development Institute (NFRDI) in Korea have been extended to all the coastal waters after the worst of fish killing by C. polykrikoides blooms in 1995. NFRDI is looking forward to finding out the feasibility of red tide detection around Korean waters using satellite remote sensing of NOAA/AVHRR, Orbview-2/SeaWiFS, IRS-P4/OCM and Terra/MODIS on real time base. In this study, we used several alternative methods including climatological analysis, spectral and optical methods which may offer a potential detection of the major species of red tide in Korean waters. The relationship between the distribution of SST and C. polykrikoides bloom areas was studied. In climatological analysis, NOAA, SeaWiFS, OCM satellite data in 20th and 26th August 2001 were chosen using the known C. polykrikoides red tide bloom area mapped by helicopter reconnaissance and ground observation. The 26th August, 2001 SeaWiFS chlorophyll a anomaly imageries against the imageries of non-occurring red tide for August 20, 2001 showed the areas C. polykrikoides occurred. The anomalies of chlorophyll a concentration from satellite data between before and after red tide outbreaks showed the similar distribution of C. polykrikoides red tide in 26th August, 2001. The distribution of the difference in SST between daytime and nighttime also showed the possibility of red tide detection. We used corrected vegetation index (CVI) to detect floating vegetation and submerged vegetation containing algal blooms. The simple result of optical absorption from C. polykrikoides showed that if we use the optical characteristics of each red tide we will be able to get the feasibility of the red tide detection.

  • PDF

정지궤도 복합위성의 광학탑재체 기계접속설계 (Mechanical Interface Design of Optical Pay loads in a GEO Multi-Functional Satellite)

  • 박종석;김창호;전형열;김성훈
    • 항공우주기술
    • /
    • 제7권1호
    • /
    • pp.99-107
    • /
    • 2008
  • 통신해양기상위성은 서로 다른 임무 수행을 위해 복수의 탑재체가 장착되는 정지궤도 복합위성이다. 탑재체중 두 장비는 지구관측임무를 수행하기위한 광학탑재체로, 용도에 따라 각각 기상과 해양탈재체로 구분된다 상이한 광학탑재 체를 위성체에 장착하여, 만족스러운 성능을 구현하기 위해서는 각각의 요구조건을 분석하고, 설계 변수에 대한 민감도 해석을 통한 일련의 최적화 과정이 필요하다. 따라서 여러 가지 종류의 설계 제한 조건에 대한 고려가 필수적이다. 본 논문에서는 통신해양기상위성의 기상 및 해양탑재체 장착을 위한 설계 시 기계 시스템 측면에서 고려된 여러 설계요건들을 제시하고, 위성체 설계에 미치는 영향을 최소화 하면서 기계 및 열적 요구조건을 충족시키기 위해 도입된 접속 구조물에 대해 설명할 것이다.

  • PDF

COMS EAST/WEST STATIONKEEPING FUEL CONUMPTION CONSIDERING MANDATORY OBSERVATION TIME SOLOTS OF OPTICAL PAYLOADS

  • Park, Bong-Kyu;Lee, Sang-Cherl;Yang, Koon-Ho
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.166-170
    • /
    • 2007
  • This paper discusses stationkeeping of COMS which accommodates two optical payloads. In order to provide good quality images to the users, the east/west stationkeeping which is strong perturbing sources shall be performed outside of mandatory observation time slots asked by users. If the east/west stationkeeping time is resulted inside of the mandatory time slots, it shall be shifted in order to be performed outside of mandatory time slot, or a new stationkeeping shall be planned. This constraint is expected to ask additional fuel consumption in comparison with tradition stationkeeping. This paper analyzes the impact of mandatory time slots to the stationkeeping fuel consumption. Orbit simulations have been conducted to determine validity of given constraints in the light of fuel requirement and stationkeeping accuracy.

  • PDF

Overview of new developments in satellite geophysics in 'Earth system' research

  • Moon Wooil M.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2004년도 대한지구물리학회.한국지구물리탐사학회 공동학술대회 초록집
    • /
    • pp.3-17
    • /
    • 2004
  • Space-borne Earth observation technique is one of the most cost effective and rapidly advancing Earth science research tools today and the potential field and micro-wave radar applications have been leading the discipline. The traditional optical imaging systems including the well known Landsat, NOAA - AVHRR, SPOT, and IKONOS have steadily improved spatial imaging resolution but increasing cloud covers have the major deterrent. The new Earth observation satellites ENVISAT (launched on March 1 2002, specifically for Earth environment observation), ALOS (planned for launching in 2004 - 2005 period and ALOS stands for Advanced Land Observation Satellite), and RADARSAT-II (planned for launching in 2005) all have synthetic aperture radar (SAR) onboard, which all have partial or fully polarimetric imaging capabilities. These new types of polarimetric imaging radars with repeat orbit interferometric capabilities are opening up completely new possibilities in Earth system science research, in addition to the radar altimeter and scatterometer. The main advantage of a SAR system is the all weather imaging capability without Sun light and the newly developed interferometric capabilities, utilizing the phase information in SAR data further extends the observation capabilities of directional surface covers and neotectonic surface displacements. In addition, if one can utilize the newly available multiple frequency polarimetric information, the new generation of space-borne SAR systems is the future research tool for Earth observation and global environmental change monitoring. The potential field strength decreases as a function of the inverse square of the distance between the source and the observation point and geophysicists have traditionally been reluctant to make the potential field observation from any space-borne platforms. However, there have recently been a number of potential field missions such as ASTRID-2, Orsted, CHAMP, GRACE, GOCE. Of course these satellite sensors are most effective for low spatial resolution applications. For similar objects, AMPERE and NPOESS are being planned by the United States and France. The Earth science disciplines which utilize space-borne platforms most are the astronomy and atmospheric science. However in this talk we will focus our discussion on the solid Earth and physical oceanographic applications. The geodynamic applications actively being investigated from various space-borne platforms geological mapping, earthquake and volcano .elated tectonic deformation, generation of p.ecise digital elevation model (DEM), development of multi-temporal differential cross-track SAR interferometry, sea surface wind measurement, tidal flat geomorphology, sea surface wave dynamics, internal waves and high latitude cryogenics including sea ice problems.

  • PDF

DEM generation from KOMPSAT-1 Electro-Optical Camera Data

  • Kim, Taejung;Lee, Heung-Kyu
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1998년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.325-330
    • /
    • 1998
  • The first Korean remote sensing satellite, Korea Multi-Purpose Satellite (KOMPSAT-1), is going to be launched in 1999. This will carry a 7m resolution Electro-Optical Camera (EOC) for earth observation. The primary mission of the KOMPSAT-1 is to acquire stereo imagery over the Korean peninsular for the generation of 1:25,000 cartographic maps. For this mission, research is being carried out to assess the possibilities of automated or semi-automated mapping of EOC data and to develop, if necessary, such enabling tools. This paper discusses the issue of automated DEM generation from EOC data and identifies some important aspects in developing a for DEM generation system from EOC data. This paper also presents the current status of the development work for such a system. The development work has focused on sensor modelling, stereo matching and DEM interpolation techniques. The performance of the system is shown with a SPOT stereo pair. A DEM generated from a commercial software is also presented for comparison. The paper concludes that the proposed system creates preferable results to the commercial software and suggests future developments for successful generation of DEM for EOC data.

  • PDF

Analysis of a Simulated Optical GSO Survey Observation for the Effective Maintenance of the Catalogued Satellites and the Orbit Determination Strategy

  • Choi, Jin;Jo, Jung Hyun;Yim, Hong-Suh;Choi, Young-Jun;Son, Ju-Young;Park, Sun-youp;Bae, Young-Ho;Roh, Dong-Goo;Cho, Sungki
    • Journal of Astronomy and Space Sciences
    • /
    • 제32권3호
    • /
    • pp.237-245
    • /
    • 2015
  • A strategy is needed for a regional survey of geosynchronous orbits (GSOs) to monitor known space objects and detect uncataloged space objects. On the basis of the Inter-Agency Debris Committee's recommendation regarding the protected region of geosynchronous Earth orbit (GEO), target satellites with perigee and apogee of $GEO{\pm}200km$ and various inclinations are selected for analysis. The status of the GSO region was analyzed using the satellite distribution based on the orbital characteristics in publicly available two-line element data. Natural perturbation effects cause inactive satellites to drift to two stable longitudinal points. Active satellites usually maintain the designed positions as a result of regular or irregular maneuver operations against their natural drift. To analyze the detection rate of a single optical telescope, 152 out of 412 active satellites and 135 out of 288 inactive satellites in the GSO region were selected on the basis of their visibility at the observation site in Daejeon, Korea. By using various vertical view ranges and various numbers of observations of the GSO region, the detection efficiencies were analyzed for a single night, and the numbers of follow-up observations were determined. The orbital estimation accuracies were also checked using the arc length and number of observed data points to maintain the GSO satellite catalog.