• Title/Summary/Keyword: optical resolution

Search Result 1,461, Processing Time 0.026 seconds

High-Speed High-Resolution Terahertz Time-Domain Spectrometer (고속 고분해 테라헤르츠 시간영역 분광기)

  • Kim, Young-Chan;Kim, Ki-Bok;Yee, Dae-Su;Yi, Min-Woo;Ahn, Jae-Wook
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.5
    • /
    • pp.370-375
    • /
    • 2008
  • High-speed high-resolution terahertz time-domain spectroscopy (THz-TDS) is demonstrated using the asynchronous-opticalsampling (AOS) method. A time-domain signal with a 10-ns time window is rapidly acquired by using two femtosecond lasers with slightly different repetition frequencies to generate and detect a terahertz pulse wave, without a mechanical delay stage. The spectrum obtained by the fast Fourier transformation (FFT) of the time-domain waveform has a frequency resolution of 100 MHz. The time resolution of our spectrometer is measured using the cross-correlation method to be 278 fs. A transmission spectrum of water vapor is measured and the absorption lines are analyzed in the frequency range from 0.1 to 1.2 THz.

Phase Control Optimization at Waveguide Crossover and Its Application to 45° Optical Hybrid for Demodulating 8DPSK Optical Signals

  • Jeong, Seok-Hwan
    • Current Optics and Photonics
    • /
    • v.5 no.6
    • /
    • pp.711-720
    • /
    • 2021
  • A novel optical hybrid device that doubles the multilevel demodulation resolution by adding the optical interferometer with a waveguide crossover is proposed, theoretically analyzed and experimentally verified. We report two types of all-passive phase control schemes that will be referred to as a phase compensation scheme and a phase optimization scheme. We also apply the proposed phase control schemes to a 45° optical hybrid consisting of two parallel 90° optical hybrids together with the proposed phase control scheme for demodulating 8-level differential phase shift keying optical signals. Octagonal phase response with low wavelength sensitive excess loss of <0.8 dB over 31-nm-wide spectral range will be demonstrated in the InP-based material platform.

Utilizing Optical Phantoms for Biomedical-optics Technology: Recent Advances and Challenges

  • Ik Hwan Kwon;Hoon-Sup Kim;Do Yeon Kim;Hyun-Ji Lee;Sang-Won Lee
    • Current Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.327-344
    • /
    • 2024
  • Optical phantoms are essential in optical imaging and measurement instruments for performance evaluation, calibration, and quality control. They enable precise measurement of image resolution, accuracy, sensitivity, and contrast, which are crucial for both research and clinical diagnostics. This paper reviews the recent advancements and challenges in phantoms for optical coherence tomography, photoacoustic imaging, digital holographic microscopy, optical diffraction tomography, and oximetry tools. We explore the fundamental principles of each technology, the key factors in phantom development, and the evaluation criteria. Additionally, we discuss the application of phantoms used for enhancing optical-image quality. This investigation includes the development of realistic biological and clinical tissue-mimicking phantoms, emphasizing their role in improving the accuracy and reliability of optical imaging and measurement instruments in biomedical and clinical research.

High-Resolution 3-D Refractive Index Tomography and 2-D Synthetic Aperture Imaging of Live Phytoplankton

  • Lee, SangYun;Kim, Kyoohyun;Mubarok, Adam;Panduwirawan, Adisetyo;Lee, KyeoReh;Lee, Shinhwa;Park, HyunJoo;Park, YongKeun
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.691-697
    • /
    • 2014
  • Optical measurements of the morphological and biochemical imaging of phytoplankton are presented. Employing quantitative phase imaging techniques, 3-D refractive index maps and high-resolution 2-D quantitative phase images of individual live phytoplankton are simultaneously obtained without exogenous labeling agents. In addition, biochemical information of individual phytoplankton including volume, mass, and density of individual phytoplankton are also quantitatively obtained from the measured refractive index distributions. We expect the present method to become a powerful tool for the study of phytoplankton.

Nano-level High Sensitivity Measurement Using Microscopic Moiré Interferometry (마이크로 무아레 간섭계를 이용한 초정밀 변형 측정)

  • Joo, Jin-Won;Kim, Han-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.2
    • /
    • pp.186-193
    • /
    • 2008
  • [ $Moir{\acute{e}}$ ] interferometry is an optical method, providing whole field contour maps of in-plane displacements with high resolution. The demand for enhanced sensitivity in displacement measurements leads to the technique of microscopic $moir{\acute{e}}$ interferometry. The method is an extension of the $moir{\acute{e}}$ interferometry, and employs an optical microscope for the required spatial resolution. In this paper, the sensitivity of $moir{\acute{e}}$ interferometry is enhanced by an order of magnitude using an immersion interferometry and the optical/digital fringe multiplication(O/DFM) method. In fringe patterns, the contour interval represents the displacement of 52 nm per fringe order. In order to estimate the reliability and the applicability of the optical system implemented, the measurements of rigid body displacements of grating mold and the coefficient of thermal expansion(CTE) for an aluminium block are performed. The system developed is applied to the measurement of thermal deformation in a flip chip plastic ball grid array package.

Performance Evaluation of MTF Peak Detection Methods by a Statistical Analysis for Phone Camera Modules

  • Kwon, Jong-Hoon;Rhee, Hyug-Gyo;Ghim, Young-Sik;Lee, Yun-Woo
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.150-155
    • /
    • 2016
  • To evaluate the autofocusing performance of recent mobile phone cameras, it is necessary to determine the peak position of the center field MTF (Modulation Transfer Function), -known as the through focus MTF- of the module. However, the MTF peak position found by conventional methods deviates from the ideal position due to the focus scanning resolution of mobile phone cameras. This inaccurate peak position results in false judgements of the optical performance, leading to yield losses or customer complaints. An increase in the focus scanning resolution can address this problem, but the manufacturing UPH (Unit per Hour) level will also unfortunately increase as well, resulting in a loss of manufacturing capabilities. In this paper, several fitting models are studied to find an accurate MTF peak position within a short period of time. With an analysis of a large amount of manufacturing data, it is demonstrated that the fitting methods can reduce false judgements and simultaneously increase the capabilities of the manufacturing system.

High-resolution Optical and Near-infrared Spectra of 2MASS J06593158-0405277

  • Park, Sunkyung;Lee, Jeong-Eun;Pyo, Tae-Soo;Sung, Hyun-Il;Lee, Sang-Gak;Kang, Wonseok;Yoon, Tae Seog;Park, Won-Kee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.54.2-54.2
    • /
    • 2017
  • We present the results of high-resolution optical (R ~ 30,000) and near-infrared (R ~ 45,000) spectroscopic monitoring observations of a new FU Orionis-like young stellar object, 2MASS J06593158-0405277. FU Orionis objects (FUors) are well-studied examples of episodic accretion because of their outburst phenomenon. Recently, 2MASS J06593158-0405277 exhibited an outburst and was identified as an FUor. It provides an important opportunity to investigate the whole FUors phenomenon from its pre-outburst to its post-outburst phase. We observed 2MASS J06593158-0405277 with the Bohyunsan Optical Echelle Spectrograph (BOES) of the Bohyunsan Optical Astronomy Observatory (BOAO) and the Immersion GRating INfrared Spectrograph (IGRINS) of Harlan J. Smith Telescope (HJST) at the McDonald observatory since December 24, 2014. We detected a number of lines and present here our analysis for time variations of those spectral lines.

  • PDF

A Technique to Improve the Readability of Ancient Inscription by Using Optical Triangulation Measurement Principle (광삼각법 측정 원리를 이용한 금석문 가독성 향상 방법)

  • Lee, Geun-Ho;Ko, Sun-Woo;Choi, Won-Ho
    • Journal of Information Technology Services
    • /
    • v.11 no.sup
    • /
    • pp.103-111
    • /
    • 2012
  • In epigraph field to study ancient scripts, alternative readability improvement technologies have been developed to replace existing rubbing method which has low resolution and causes surface pollution of heritages from the viewpoints of extraction process and used materials. Recently many methods which are based on analysis of pixel data for extracting outlines of the specific image have been developed with advancement of image processing techniques. But these methods are not applicable and the results are not satisfied in the damaged inscriptions which are weathered by wind and rain for a long time and in the narrowed one. In this paper laser scanning techniques which uses optical triangulation measurement principle are developed to minimize scanning error. The proposed techniques are consisted of 3 parts:(1) the understanding of optical triangulation measurement principle to find scanning guideline (2) determinations of points interval, scanning distance and scanning angle to guarantee scanning data quality (3) identification of valid point data area which will be used in registration process. The proposed character identification method contributed in decoding an ancient inscription on SeukBingGo in Kyungju.

NEAR-IR PHOTOMETRIC AND OPTICAL SPECTROSCOPIC STUDY OF THE FU ORIONIS OBJECT V582 AURIGAE

  • OH, HYUNG-IL;YOONY, TAE SEOG;SUNG, HYUN-IL
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.269-270
    • /
    • 2015
  • We carried out near-IR photometric and optical spectroscopic observations of V582 Aur, which is a FU Orionis type object, to investigate any periodic and/or aperiodic variations. We obtained light curves on the scale of a night and a year, in J, H and Ks bands with KASINICS (KASI Near Infrared Camera System) attached to the BOAO (Bohyun-san Optical Astronomy Observatory) 1.8-m reflector in Youngcheon, South Korea and examined photometric variations on the two time scales. So far we have not found any periodic brightness variations on the scale of a night. On the other hand, we have found that there seems to be a periodic brightness variation with a period of approximately 45 days. In addition, high-resolution optical spectroscopic observations of V582 Aur were performed from February 2013 to May 2014 with the high-resolution echelle spectrograph BOES attached to the BOAO 1.8-m reflector. We analyzed several spectral lines to understand the physical state of V582 Aur. The P Cyg profiles are clearly shown in the $H{\alpha}$ line and Na I D line.