• Title/Summary/Keyword: optical properties characterization

Search Result 346, Processing Time 0.032 seconds

Preparation and Characterization of Flexible Optical Composite Films Based on Bragg-Structured Interferometer

  • Um, Sungyong;Sohn, Honglae
    • Journal of Integrative Natural Science
    • /
    • v.6 no.4
    • /
    • pp.244-250
    • /
    • 2013
  • Three types of functionalized flexible optical composite films based on Bragg structure porous silicon interferometer have been successfully fabricated by casting a toluene solution of polystyrene onto the free-standing porous silicon. The optical properties of composite films are measured. Surface functionalization of porous silicon is determined by FT-IR measurement. Reflectance and transparence properties of composite films are measured for the possible application of tunable optical filter and indicate that the transmission peak occurred at the identical location where the reflection peak appeared.

Electrical/Optical Characterization of PZT Thin Films Deposited through Sol-Gel Processing

  • Hwang, Hee-Soo;Kwon, Kyoeng-Woo;Choi, Jeong-Wan;Do, Woo-Ri;Hwang, Jin-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.361-361
    • /
    • 2012
  • PZT (Pb(Zr,Ti)O3) thin films have been used widely in the MEMS application, due to their inherent ferroelectric and piezoelectric properties. Such ferroelectricity induces much higher dielectric constants compared to those of the nonperovskite materials. In this work, the PZT thin films were deposited onto Indium-Tin-oxide (ITO) substrates through the spin-coating of PZT sols. The deposited PZT thin films were characterized in terms of the electrical and optical properties with special emphases on conductivity and optical constants. The detailed analysis techniques incorporate the dc-based current-voltage characteristics for the electrical properties, spectroscopic ellipsometry for optical characterization, atomic force microscopy for surface morphology, X-ray Photoelectron Spectroscopy for chemical bonding, Energy-dispersive X-ray Spectrometry for chemical analyses and X-ray diffraction for crystallinity. The ferroelectric phenomena were confirmed using capacitance-voltage measurements. The integrated physical/chemical features are attempted towards energy-oriented applications applicable to next-generation high-efficiency power generation systems.

  • PDF

Effect of Film Thickness on Structural, Electrical, and Optical Properties of Sol-Gel Deposited Layer-by-layer ZnO Nanoparticles

  • Shariffudin, S.S.;Salina, M.;Herman, S.H.;Rusop, M.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.2
    • /
    • pp.102-105
    • /
    • 2012
  • The structural, electrical, and optical properties of layer-by-layer ZnO nanoparticles deposited using sol-gel spin coating technique were studied and now presented. Thicknesses of the thin films were varied by increasing the number of deposited layers. As part of our characterization process, XRD and FE-SEM were used to characterize the structural properties, current-voltage measurements for the electrical properties, and UV-Vis spectra and photoluminescence spectra for the optical properties of the ZnO thin films. ZnO thin films with thicknesses ranging from 14.2 nm to 62.7 nm were used in this work. Film with thickness of 42.7 nm gave the lowest resistivity among all, $1.39{\times}10^{-2}{\Omega}{\cdot}cm$. Photoluminescence spectra showed two peaks which were in the UV emission centered at 380 nm, and visible emission centered at 590 nm. Optical transmittance spectra of the samples indicated that all films were transparent (>88%) in the visible-NIR range. The optical band gap energy was estimated to be 3.21~3.26 eV, with band gap increased with the thin film thickness.

Hot stage microscopy and its applications in pharmaceutical characterization

  • Arun Kumar;Pritam Singh;Arun Nanda
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.12.1-12.11
    • /
    • 2020
  • Hot stage microscopy (HSM) is a thermal analysis technique that combines the best properties of thermal analysis and microscopy. HSM is rapidly gaining interest in pharmaceuticals as well as in other fields as a regular characterization technique. In pharmaceuticals HSM is used to support differential scanning calorimetry (DSC) and thermo-gravimetric analysis (TGA) observations and to detect small changes in the sample that may be missed by DSC and TGA during a thermal experiment. Study of various physical and chemical properties such sample morphology, crystalline nature, polymorphism, desolvation, miscibility, melting, solid state transitions and incompatibility between various pharmaceutical compounds can be carried out using HSM. HSM is also widely used to screen cocrystals, excipients and polymers for solid dispersions. With the advancements in research methodologies, it is now possible to use HSM in conjunction with other characterization techniques such as Fourier transform infrared spectroscopy (FTIR), DSC, Raman spectroscopy, scanning electron microscopy (SEM) which may have additional benefits over traditional characterization techniques for rapid and comprehensive solid state characterization.

A Photon Modeling Method for Characterization of Indoor Optical Wireless System (실내 광 무선 통신 특성 해석을 위한 포톤 모델링 방법)

  • Lee, Jung-Han;Lee, Haeng-Seon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.6
    • /
    • pp.688-697
    • /
    • 2008
  • In this paper, an analysis method for indoor optical wireless channel properties based on photon model is presented for characterization of communication environment. In contrast to radio waves, optical waves have very short wave-lengths and very high frequencies, so that material properties become important. Channel models including diffuse reflections and absorption effects due to material surface textures make conventional electromagnetic wave analysis methods based on ray tracing consume enormous time. To overcome these problems, an analysis method using photon model is presented that approximates light intensity by a density of photons. The photon model ensures that simulation time is within a predictable limit.

Study of Synthesis and Optical Characterization of Amino-functionalized Tetraphenylsilole (아미노기로 기능화 된 실올의 합성 및 광학적 특성에 관한 연구)

  • Cho, Sungdong
    • Journal of Integrative Natural Science
    • /
    • v.2 no.3
    • /
    • pp.194-197
    • /
    • 2009
  • Organometallic containing silole unit has been interested, since silole has a unique optical and electronic properties. The main goal of this work is to develop new selective sensors for organosilicon of 1-methyl-2,3,4,5-tetraphenyl-1H-silole and 1-methyl-1-(3-aminopropyl)-2,3,4,5-tetraphenylsilole based on new silole have been characterized by UV-vis absorption spectroscopy. their optical characteristics have been also investigate using photoluminescence spectroscopy.

  • PDF