• Title/Summary/Keyword: optical parameter

Search Result 531, Processing Time 0.032 seconds

Development of AI oxygen temperature measurement technology using hyperspectral optical visualization technology (초분광 광학가시화 기술을 활용한 인공지능 산소온도 측정기술 개발)

  • Jeong Hun Lee;Bo Ra Kim;Seung Hun Lee;Joon Sik Kim;Min Yoon;Gyeong Rae Cho
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.1
    • /
    • pp.103-109
    • /
    • 2023
  • This research developed a measurement technique that can measure the oxygen temperature inside a high temperature furnace. Instead of measuring only changes in frequency components within a small range used in the existing variable laser absorption spectroscopy, laser spectroscopy technology was used to spread out wavelength of the light source passing through the gas Based on a total of 20,000 image data, research was conducted to predict the temperature of a high-temperature furnace using CNN with black and white images in the form of spectral bands by temperature of 25 to 800 degrees. The optimal model was found through Hyper parameter optimization, R2 score is 0.89, and the accuracy of the test data is 88.73%. Based on this research, it is expected that concentration measurement and air-fuel ratio control technology can be applied.

Star-forming Dwarf Galaxies in Filamentary Structures around the Virgo Cluster

  • Rey, Soo-Chang;Chung, Jiwon;Kim, Suk;Lee, Youngdae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.69.3-70
    • /
    • 2021
  • We present the chemical properties of star-forming dwarf galaxies (SFDGs) in five filamentary structures (Leo II A, Leo II B, Leo Minor, Canes Venatici, and Virgo III) around the Virgo cluster using the Sloan Digital Sky Survey optical spectroscopic data and Galaxy Evolution Explorer ultraviolet photometric data. We investigate the relationship between stellar mass, gas-phase metallicity, and specific star formation rate (sSFR) of SFDGs in the Virgo filaments in comparison to those in the Virgo cluster and field. We find that, at a given stellar mass, SFDGs in the Virgo filaments show lower metallicity and higher sSFR than those in the Virgo cluster on average. We observe that SFDGs in the Virgo III filament show enhanced metallicities and suppressed star formation activities comparable to those in the Virgo cluster, whereas SFDGs in the other four filaments exhibit similar properties to the field counterparts. Moreover, about half of the galaxies in the Virgo III filament are found to be morphologically transitional dwarf galaxies that are supposed to be on the way to transforming into quiescent dwarf early-type galaxies. Based on the analysis of the galaxy perturbation parameter, we propose that the local environment represented by the galaxy interactions might be responsible for the contrasting features in "chemical pre-processing" found in the Virgo filaments.

  • PDF

Photometric study of Main-belt asteroid (298) Baptistina

  • Kim, Dong-Heun;Kim, Myung-Jin;Lee, Hee-Jae;Kaplan, Murat;Erece, Orhan;Kim, Taewoo;Yoon, Joh-Na;Marciniak, Anna;Moon, Hong-Kyu;Choi, Young-Jun;Kim, Yonggi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.48.1-48.1
    • /
    • 2021
  • The Main-belt asteroid (298) Baptistina (hereafter 'Baptistina') is regarded as an X- (or C-) type asteroid and the largest member of the Baptistina asteroid family. Its basic physical properties play an important role in understanding the rotational evolution and orbital dynamics of the Baptistina family. In this study, we determined the physical characteristics of Baptistina from the optical observations. We conducted BVRI and R band photometric observations from 2017 to 2021 for a total of 47 nights using the 0.5 - 2.0 m-class telescopes. As a result, the color indices of Baptistina were derived as, , and ; this result is consistent with the previous classification of Baptistina as an X- (or C-) type. We also determined absolute magnitude () and slope parameter () by using a simplified version of the IAU H & G function (Bowell et al. 1989) are mag and respectively. We calculated the effective radius of Baptistina of km considering the visual geometric albedo of 0.131 from the NEOWISE data. Using the light-curve inversion method, the sidereal rotation period of 16.224235 h and the 3D shape model with a pole orientation (,) were also determined. In this presentation we will introduce our observations and results, and also discuss about the physical properties of Baptistina asteroid family members such as color indices.

  • PDF

Inference of Chromospheric Plasma Parameters on the Sun from Strong Absorption Lines

  • Chae, Jongchul;Madjarska, Maria S.;Kwak, Hannah;Cho, Kyuhyoun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.44.4-45
    • /
    • 2020
  • The solar chromosphere can be observed well through strong absorption lines. We infer the physical parameters of chromospheric plasmas from these lines using a multilayer spectral inversion. This is a new technique of spectral inversion. We assume that the atmosphere consists of a finite number of layers. In each layer the absorption profile is constant and the source function is allowed to vary with optical depth. Specifically, we consider a three-layer model of radiative transfer where the lowest layer is identified with the photosphere and the two upper layers are identified with the chromosphere. This three-layer model is fully specified by 13 parameters. Four parameters can be fixed to prescribed values, and one parameter can be determined from the analysis of a satellite photospheric line. The remaining eight parameters are determined from a constrained least-squares fitting. We applied the multilayer spectral inversion to the spectral data of the Hα and the Ca II 854.21 nm lines taken in a quiet region by the Fast Imaging Solar Spectrograph (FISS) of the Goode Solar Telescope (GST). We find that our model successfully fits most of the observed profiles and produces regular maps of the model parameters. We conclude that our multilayer inversion is useful to infer chromospheric plasma parameters on the Sun.

  • PDF

Adaptive Extraction Method for Phase Foreground Region in Laser Interferometry of Gear

  • Xian Wang;Yichao Zhao;Chaoyang Ju;Chaoyong Zhang
    • Current Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.387-397
    • /
    • 2023
  • Tooth surface shape error is an important parameter in gear accuracy evaluation. When tooth surface shape error is measured by laser interferometry, the gear interferogram is highly distorted and the gray level distribution is not uniform. Therefore, it is important for gear interferometry to extract the foreground region from the gear interference fringe image directly and accurately. This paper presents an approach for foreground extraction in gear interference images by leveraging the sinusoidal variation characteristics shown by the interference fringes. A gray level mask with an adaptive threshold is established to capture the relevant features, while a local variance evaluation function is employed to analyze the fluctuation state of the interference image and derive a repair mask. By combining these masks, the foreground region is directly extracted. Comparative evaluations using qualitative and quantitative assessment methods are performed to compare the proposed algorithm with both reference results and traditional approaches. The experimental findings reveal a remarkable degree of matching between the algorithm and the reference results. As a result, this method shows great potential for widespread application in the foreground extraction of gear interference images.

Athermal Design and Performance Verification of an LWIR Zoom Lens for Drones

  • Kwang-Woo Park;Sung-Chan Park
    • Current Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.366-374
    • /
    • 2024
  • This paper presents an optimum method for determining the parameters to athermalize a long-wavelength infrared (LWIR) zoom camera by introducing the defocus sensitivity analysis. To effectively find parameters that significantly affect thermal defocus, we simulated athermal analysis with temperature changes for all variables. Consequently, we found that the optimum parameter to correct thermal defocus is the compensation lens, and its movements with temperature at each zoom position are obtained from the simulated athermal analysis. To verify the efficiency of our athermal approach, we performed actual athermal tests in a broad temperature range at each zoom position. The simulated athermal analysis provides the initial position of the compensation lens at the corresponding temperature and zoom position. Then the compensation lens is elaboratively moved to serve the highest live contrast ratio (LCR) for the target. This experiment shows that the compensation lens locations in the actual test are closely matched to those in the simulated athermal analysis. In addition, two outdoor tests conducted in two different environments confirm that the autofocus system suggested in this study performs well at all zoom positions. Using the proposed athermal analysis approach in this paper, we efficiently realize an athermal system over the specified temperature and zoom ranges.

Development of Adaptive Optics System for the Geochang 100 cm Telescope

  • Hyung-Chul Lim;Francis Bennet;Sung-Yeol Yu;Ian Price;Ki-Pyoung Sung;Mansoo Choi
    • Journal of Space Technology and Applications
    • /
    • v.4 no.3
    • /
    • pp.185-198
    • /
    • 2024
  • Korea Astronomy and Space science Institute (KASI) partnered with the Australian National University (ANU) to develop the adaptive optics (AO) system at the Geochang observatory with a 100 cm optical telescope for multiple applications, including space geodesy, space situational awareness and Korean space missions. The AO system is designed to get high resolution images of space objects with lower magnitude than 10 by using themselves as a natural guide star, and achieve a Strehl ratio larger than 20% in the environment of good seeing with a fried parameter of 12-15 cm. It will provide the imaging of space objects up to 1,000 km as well as its information including size, shape and orientation to improve its orbit prediction precision for collision avoidance between active satellites and space debris. In this paper, we address not only the design of AO system, but also analyze the images of stellar objects. It is also demonstrated that the AO System is achievable to a near diffraction limited full width at half maximum (FWHM) by analyzing stellar images.

Inherent Optical Properties of Red Tide Algal for Ocean Color Remote Sensing Application (해색원격탐사 활용을 위한 적조생물종 고유 광특성 연구)

  • Ahn, Yu-Hwan;Moon, Jeong-Eon;Seo, Won-Chan;Yoon, Hong-Joo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.1
    • /
    • pp.47-54
    • /
    • 2009
  • This research is about the inherent optical properties(IOPs) of algae which is collected from Nam-Hae for basic research of red tide remote sensing technique development. 21 kinds of red tide organisms were cultivated to investigate IOPs of them in the level of laboratory, and specific absorption coefficient of phytoplankton($a^*$) and backscattering coefficient of phytoplankton(${b_b}^*$) are estimated by using spectrophotometer. Absorption spectrums according to species appeared to range from 0.005 to 0.06 ($m^2{\cdot}mg^{-1}$), and the shapes of spectrums were also different. The range of ${b_b}^*$ appeared to be $10^{-2}{\sim}10^{-4}\;m^2{\cdot}mg^{-1}$, which had about 100 times differences between species, and the shape of spectrum have significant difference between species. These results will input as a remote sensing reflectance model input parameter from ocean color.

  • PDF

Energy Level Calculation of Fe3+ Paramagnetic Impurity Ion in a LiTaO3 Single Crystal (LiTaO3 단결정 내의 Fe3+ 상자성 불순물 이온에 대한 에너지 준위 계산)

  • Yeom, Tae Ho;Yoon, Dal Hoo;Lee, Soo Hyung
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.3
    • /
    • pp.71-75
    • /
    • 2014
  • Ground state energy levels of the $Fe^{3+}$ paramagnetic impurity ion in stoichiometric $LiTaO_3$ and in congruent $LiTaO_3$ single crystals were calculated with electron paramagnetic resonance constants. Energy levels between six energy levels were obtained with spectroscopic splitting parameter g and zero field splitting constant D for $Fe^{3+}$ ion. The energy diagrams of $Fe^{3+}$ ion were different from different magnetic field directions ([100], [001], [111]) when magnetic field increases. The calculated ZFS energies of $Fe^{3+}$ ion in stoichiometric and congruent $LiTaO_3$ single crystals for ${\mid}{\pm}5/2$ > ${\leftrightarrow}{\mid}{\pm}3/2$ > and ${\mid}{\pm}3/2$ > ${\leftrightarrow}{\mid}{\pm}1/2$ > transitions were 12.300 GHz and 6.150 GHz, and 59.358 GHz and 29.679 GHz, respectively. It turns out that energy levels of $Fe^{3+}$ paramagnetic impurity in $LiTaO_3$ crystal are different from different crystal growing condition.

Impact of Lambertian Cloud Top Pressure Error on Ozone Profile Retrieval Using OMI (램버시안 구름 모델의 운정기압 오차가 OMI 오존 프로파일 산출에 미치는 영향)

  • Nam, Hyeonshik;Kim, Jae Hawn;Shin, Daegeun;Baek, Kanghyun
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.3
    • /
    • pp.347-358
    • /
    • 2019
  • Lambertian cloud model (Lambertian Cloud Model) is the simplified cloud model which is used to effectively retrieve the vertical ozone distribution of the atmosphere where the clouds exist. By using the Lambertian cloud model, the optical characteristics of clouds required for radiative transfer simulation are parametrized by Optical Centroid Cloud Pressure (OCCP) and Effective Cloud Fraction (ECF), and the accuracy of each parameter greatly affects the radiation simulation accuracy. However, it is very difficult to generalize the vertical ozone error due to the OCCP error because it varies depending on the radiation environment and algorithm setting. In addition, it is also difficult to analyze the effect of OCCP error because it is mixed with other errors that occur in the vertical ozone calculation process. This study analyzed the ozone retrieval error due to OCCP error using two methods. First, we simulated the impact of OCCP error on ozone retrieval based on Optimal Estimation. Using LIDORT radiation model, the radiation error due to the OCCP error is calculated. In order to convert the radiation error to the ozone calculation error, the radiation error is assigned to the conversion equation of the optimal estimation method. The results show that when the OCCP error occurs by 100 hPa, the total ozone is overestimated by 2.7%. Second, a case analysis is carried out to find the ozone retrieval error due to OCCP error. For the case analysis, the ozone retrieval error is simulated assuming OCCP error and compared with the ozone error in the case of PROFOZ 2005-2006, an OMI ozone profile product. In order to define the ozone error in the case, we assumed an ideal assumption. Considering albedo, and the horizontal change of ozone for satisfying the assumption, the 49 cases are selected. As a result, 27 out of 49 cases(about 55%)showed a correlation of 0.5 or more. This result show that the error of OCCP has a significant influence on the accuracy of ozone profile calculation.