• Title/Summary/Keyword: optical observation

Search Result 760, Processing Time 0.023 seconds

Optical Orbit Determination of a Geosynchronous Earth Orbit Satellite Effected by Baseline Distances between Various Ground-based Tracking Stations I: COMS simulation case

  • Son, Ju Young;Jo, Jung Hyun;Choi, Jin
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.221-228
    • /
    • 2015
  • To protect and manage the Korean space assets including satellites, it is important to have precise positions and orbit information of each space objects. While Korea currently lacks optical observatories dedicated to satellite tracking, the Korea Astronomy and Space Science Institute (KASI) is planning to establish an optical observatory for the active generation of space information. However, due to geopolitical reasons, it is difficult to acquire an adequately sufficient number of optical satellite observatories in Korea. Against this backdrop, this study examined the possible locations for such observatories, and performed simulations to determine the differences in precision of optical orbit estimation results in relation to the relative baseline distance between observatories. To simulate more realistic conditions of optical observation, white noise was introduced to generate observation data, which was then used to investigate the effects of baseline distance between optical observatories and the simulated white noise. We generated the optical observations with white noise to simulate the actual observation, estimated the orbits with several combinations of observation data from the observatories of various baseline differences, and compared the estimated orbits to check the improvement of precision. As a result, the effect of the baseline distance in combined optical GEO satellite observation is obvious but small compared to the observation resolution limit of optical GEO observation.

Optical Orbit Determination of a Geosynchronous Earth Orbit Satellite Effected by Baseline Distances between Various Ground-based Tracking Stations II: COMS Case with Analysis of Actual Observation Data

  • Son, Ju Young;Jo, Jung Hyun;Choi, Jin;Kim, Bang-Yeop;Yoon, Joh-Na;Yim, Hong-Suh;Choi, Young-Jun;Park, Sun-Youp;Bae, Young Ho;Roh, Dong-Goo;Park, Jang-Hyun;Kim, Ji-Hye
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.229-235
    • /
    • 2015
  • We estimated the orbit of the Communication, Ocean and Meteorological Satellite (COMS), a Geostationary Earth Orbit (GEO) satellite, through data from actual optical observations using telescopes at the Sobaeksan Optical Astronomy Observatory (SOAO) of the Korea Astronomy and Space Science Institute (KASI), Optical Wide field Patrol (OWL) at KASI, and the Chungbuk National University Observatory (CNUO) from August 1, 2014, to January 13, 2015. The astrometric data of the satellite were extracted from the World Coordinate System (WCS) in the obtained images, and geometrically distorted errors were corrected. To handle the optically observed data, corrections were made for the observation time, light-travel time delay, shutter speed delay, and aberration. For final product, the sequential filter within the Orbit Determination Tool Kit (ODTK) was used for orbit estimation based on the results of optical observation. In addition, a comparative analysis was conducted between the precise orbit from the ephemeris of the COMS maintained by the satellite operator and the results of orbit estimation using optical observation. The orbits estimated in simulation agree with those estimated with actual optical observation data. The error in the results using optical observation data decreased with increasing number of observatories. Our results are useful for optimizing observation data for orbit estimation.

Two-Site Optical Observation and Initial Orbit Determination for Geostationary Earth Orbit Satellites

  • Choi, Jin;Choi, Young-Jun;Yim, Hong-Suh;Jo, Jung-Hyun;Han, Won-Yong
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.4
    • /
    • pp.337-343
    • /
    • 2010
  • Optical observation system provides angle-only measurement for orbit determination of space object. Range measurement can be directly acquired using laser ranging or tone ranging system. Initial orbit determination (IOD) by using angle- only data set shows discrepancy according to the measurement time interval. To solve this problem, range measurement data should be added for IOD. In this study, two-site optical observation was used to derive the range information. We have observed nine geostationary earth orbit satellites by using two-site optical observation system. The determination result of the range shows the accuracy over 99.5% compared to the results from the satellite tool kit simulation. And we confirmed that the orbit determination by the Herrick-Gibbs method with the range information obtained from the two-site observation is more accurate than the orbit determination by Gauss method with the one-site observation. For more accurate two-site optical observation, a baseline should satisfy an optimal condition of length and more precise observation system needed.

지구관측위성 현황 조사

  • Shin, Jae-Min;Kim, Hee-Seob;Kim, Eung-Hyun;Im, Jung-Heum
    • Aerospace Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.63-72
    • /
    • 2003
  • On the basis of sensor types, satellites can be classified by two types, which are optical observation satellite and radar observation satellite. A satellite type is selected according to the specific mission. Optical observation satellite is more appropriate for getting high geometric resolution images and radar observation satellite is more appropriate for getting images independent of weather condition the more a demand of satellite increases, the more an importance of information increases. Therefore, development trend and state of earth observation satellite are surveyed and described in this paper. In the future, domestic development of satellites will be planned considering trend of satellite technologies.

  • PDF

REMOTE OBSERVATION SYSTEM ON WORLD WIDE WEB (WWW를 이용한 원격관측시스템)

  • PARK BYEONG-GON;YUK IN-SOO;HAN INWOO;KIM SEUNG-LEE;CHUN MOO-YOUNG;SEONG HYEON-CHEOL
    • Publications of The Korean Astronomical Society
    • /
    • v.13 no.1 s.14
    • /
    • pp.75-84
    • /
    • 1998
  • We present the development of a remote observation system runnig on world wide web (WWW). The system consists of a 30cm Schmidt Cassegrain telescope and ST-7 CCD camera. We built the controllers and drivers of the telescope and the control softwares including the network control. The self-developed techniques in the hard wares and softwares can be applied to other projects in Korea. Observers can access the system via WWW home page, to reserve observation times, to send control commands, to retrieve images and various information useful for observation. This system can be widely used by students and amateur astronomers as well as professional astronomers who need a lot of small telescope time.

  • PDF

Development of the Ultra Precision Machining of IR Material for Space Observation Optical System (우주관측용 광학계의 적외선 초자 초정밀 가공 기술개발)

  • Yang, Sun-Choel;Won, Jong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.12
    • /
    • pp.9-14
    • /
    • 2010
  • Using an IR (infrared) optical system of observation and research were performed long before. Nowadays satellites equipped with IR optical system observe the earth and universe. In this paper, we developed the IR optical system for main payload of the STSAT-3 (Science and Technology Satellite -3). We studied the ultra precision machining technique to fabricate FPL-53 lenses which is the IR optical material for space observation camera of the STSAT-3. DOE (Design of Experiment) was used to find best machining characteristic for FPL-53. Finally we fabricated FPL-53 aspheric lens with the form accuracy of P-V $0.36\;{\mu}m$.

Computer-Aided Alignment of an Earth Observation Camera (컴퓨터를 이용한 지구관측 카메라의 광학정렬)

  • Kim, Eugene D.;Choi, Young-Wan;Kang, Myung-Seok;Kim, Ee-Eul;Yang, Ho-Soon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.10
    • /
    • pp.142-146
    • /
    • 2004
  • Spaceborne earth observation or astronomical payloads often use Cassegrain-type telescopes due to limits in mass and volume. Precision optical alignment of such a telescope is vital to the success of the mission. This paper describes the alignment simulation and experiment of computer-aided alignment method during the assembly of MAC (Medium-sized Aperture Camera) telescope for spaceborne earth observation.

Searching for Electromagnetic Counterpart of Gravitational Wave Source with KMTNet

  • Kim, Joonho;Im, Myungshin;Lee, Chung-Uk;Kim, Seung-Lee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.62.3-62.3
    • /
    • 2019
  • After first identification of electromagnetic counterpart of gravitational wave source (GW170817), era of multi-messenger astronomy has begun. For specifying coordinate, magnitude, and host galaxy information, optical follow-up observation of GW source becomes important. With following engineering run and O3 run of LIGO and VIRGO starting in March 2019, we present searching strategy for optical counterpart of GW source using KMTNet. 24 hours monitoring system and large field of view (4 square-degree) of KMTNet are advantage to discover a transient like GW event. By performing tiling observation of high probability area in GW localization map, we expect to observe early light-curve of GW optical counterpart. After identification, follow-up observation with various KMTNet bands and other telescopes like Gemini and UKIRT will also be performed. We will study collision mechanism, progenitor, and characteristics of host galaxy using observation data of GW source.

  • PDF

An optical design of a high resolution earth observation camera for small satellites (소형 위성용 고해상도 광학카메라 광학설계)

  • 이준호;김용민;이응식;유상근;김이을;최영완;박동조
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.1
    • /
    • pp.6-12
    • /
    • 2000
  • A space-borne earth observation camera is an electro-optical instrument to measure the characteristics of the earth's surface, and to transmit the measured data to a ground station(s). The specifications of a space-borne camera, such as resolution, swath width and observation bands, are determined by its mission objectives. This paper lists some specifications of a camera suitable for small satellite and then presents an optical design, with the results of tolerancing analysis, which satisfies the given specifications. tions.

  • PDF

Visibility Analysis of Domestic Satellites on Proposed Ground Sites for Optical Surveillance

  • Kim, Jae-Hyuk;Jo, Jung-Hyun;Choi, Jin;Moon, Hong-Kyu;Choi, Young-Jun;Yim, Hong-Suh;Park, Jang-Hyun;Park, Eun-Seo;Park, Jong-Uk
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.4
    • /
    • pp.319-332
    • /
    • 2011
  • The objectives of this study are to analyze the satellite visibility at the randomly established ground sites, to determine the five optimal ground sites to perform the optical surveillance and tracking of domestic satellites, and to verify the acquisition of the optical observation time sufficient to maintain the precise ephemeris at optimal ground sites that have been already determined. In order to accomplish these objectives, we analyzed the visibility for sun-synchronous orbit satellites, low earth orbit satellites, middle earth orbit satellites and domestic satellites as well as the continuous visibility along with the fictitious satellite ground track, and calculate the effective visibility. For the analysis, we carried out a series of repetitive process using the satellite tool kit simulation software developed by Analytical Graphics Incorporated. The lighting states of the penumbra and direct sun were set as the key constraints of the optical observation. The minimum of the observation satellite elevation angle was set to be 20 degree, whereas the maximum of the sun elevation angle was set to be -10 degree which is within the range of the nautical twilight. To select the candidates for the optimal optical observation, the entire globe was divided into 84 sectors in a constant interval, the visibility characteristics of the individual sectors were analyzed, and 17 ground sites were arbitrarily selected and analyzed further. Finally, five optimal ground sites (Khurel Togoot Observatory, Assy-Turgen Observatory, Tubitak National Observatory, Bisdee Tier Optical Astronomy Observatory, and South Africa Astronomical Observatory) were determined. The total observation period was decided as one year. To examine the seasonal variation, the simulation was performed for the period of three days or less with respect to spring, summer, fall and winter. In conclusion, we decided the optimal ground sites to perform the optical surveillance and tracking of domestic satellites and verified that optical observation time sufficient to maintain the precise ephemeris could be acquired at the determined observatories.