• Title/Summary/Keyword: optical measuring system

Search Result 509, Processing Time 0.03 seconds

Development of Intelligent Robot Vision System for Automatic Inspection of Optical Lens (광학렌즈 자동 검사용 지능형 로봇 비젼 시스템 개발)

  • 정동연;장영희;차보남;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.247-252
    • /
    • 2004
  • Developed shape awareness technology and vision technology for optical ten slant in this research and including external form state of lens for the performance verification developed so that can be good achieve badness finding. And, establish to existing reflex data because inputting surface badness degree of scratch's standard specification condition directly, and error designed to distinguish from product more than schedule error to badness product by normalcy product within schedule extent after calculate the error comparing actuality measurement reflex data md standard reflex data mutually. Developed system to smallest 1pixel unit though measuring is possible 1pixel as 3.7$\mu\textrm{m}$${\times}$3.7$\mu\textrm{m}$(0.1369${\times}$10/sub-1/$\textrm{mm}^2$) the accuracy to 10/sub-1/mm minutely measuring is possible performance verification and trust ability through an experiment prove.

  • PDF

Accuracy Verification of Optical Tracking System for the Maxillary Displacement Estimation by Using of Triangulation (삼각측량기법을 이용한 광학추적장치의 상악골 변위 계측에 대한 정확성 검증)

  • Kyung, Kyu-Young;Kim, Soung-Min;Lee, Jong-Ho;Myoung, Hoon;Kim, Myung-Jin
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.34 no.1
    • /
    • pp.41-52
    • /
    • 2012
  • Purpose: Triangulation is the process of determining the location of a point by measuring angles to it from known points at either end of a fixed baseline. This point can be fixed as the third point of a triangle with one known side and two known angles. The aim of this study was to find a clinically adaptable method for applying an optical tracking navigation system to orthognathic surgery and to estimate its accuracy of measuring the bone displacement by use of triangulation methods. Methods: In orthognathic surgery, the head position is not fixed as in neurosurgery, so that a head tracker is needed to establish the reference point on the head surface byusing an optical tracking system. However, the operation field is interfered by its bulkiness that makes its clinical use difficult. To solve this problem, we designed a method using an Aquaplast splinting material and a mini-screw in applying a head tracker on a patient's forehead. After that, we estimated the accuracy of measuring displacements of the ball marker by an optical tracking system with a conventional head tracker (Group A) and with a newly designed head tracker (Group B). Measured values of ball markers' displacements by each optical tracking system were compared with values obtained from fusion CT images for an estimation of accuracy. Results: The accuracy of the optical tracking system with a conventional head tracker (Group A) is not suitable for clinical usage. Measured and predictable errors are larger than 10 mm. The optical tracking system with a newly designed head tracker (Group B) shows 1.59 mm, 6.34 mm, and 9.52 mm errorsin threeclinical cases. Conclusion: Most errors were brought on mainly from a lack of reproducibility of the head tracker position. The accuracy of the optical tracking system with a newly designed head tracker can be a useful method in further orthognathic navigation surgery even though the average error is higher than 2.0 mm.

Performance Evaluation of Low-cost Optical Components used for Measuring the Optical Density and Concentration of Particulate Matter(PM) (입자상물질의 광학밀도 및 농도측정에 적용된 저가형 광학 부품의 성능평가)

  • Baik, Young Jo;Hong, Terki;Hwang, Cheol Hong;Park, Seul Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.5
    • /
    • pp.1-6
    • /
    • 2016
  • The performance of a set of low-cost optical components used for measuring the optical density of PM particles was evaluated in the present study. To this end, the set of low-cost optical components was replaced with that of general optical components used to measure the PM optical density under identical experimental conditions. The optical densities measured from the set of general optical components were then compared to those obtained from the set of low-cost optical components. While the optical density is measured, another key parameter, the dimensionless extinction constant of PM particles (which is needed to optically measure the PM concentration) was also determined in the present study. The experimental results indicate that the optical density and PM concentration measurements performed by low-cost optical components are feasible, producing trackable variations in the OD and concentrations compared to values obtained from the set of general optical components.

Application of an Optical Current Transformer For Measuring High Current

  • Kim, Yeong-Min;Park, Won-Zoo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.11
    • /
    • pp.9-16
    • /
    • 2010
  • This paper examines the temperature characteristics of an Optical CT (optical current transformer) using the Faraday effect for measuring high current in a super high voltage-power apparatus. It is performed as follows by the sensor for embodying Faraday effect. $\cdot$ A single-mode optical fiber capable of maintaining a polarization state is used. $\cdot$ A light source is applied at 1310[nm] to a Laser Diode. $\cdot$ The Linear of Faraday effect to a large current is evaluated and $\cdot$ A possible application using an Optical CT was shown. An Influence of Faraday effect to the surrounding temperature measured -40~50[$^{\circ}C$], and the characteristic of the current sensitivity was reported. An application using the results of the temperature compensation system was used in order to compensate for surrounding temperatures. A possibility of applying Optical CT for electric power apparatus was advanced further. We were able to confirm that this temperature calibration method can minimize the fluctuation of the output signal depending on the temperature conditions.

WAVEFRONT SENSING TECHNOLOGY FOR ADAPTIVE OPTICAL SYSTEMS

  • Uhma Tae-Kyoung;Rohb Kyung-Wan;Kimb Ji-Yeon;Park Kang-Soo;Lee Jun-Ho;Youn Sung-Kie
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.628-632
    • /
    • 2005
  • Remote sensing through atmospheric turbulence had been hard works for a long time, because wavefront distortion due to the Earth's atmospheric turbulence deteriorates image quality. But due to the appearance of adaptive optics, it is no longer difficult things. Adaptive optics is the technology to correct random optical wavefront distortions in real time. For past three decades, research on adaptive optics has been performed actively. Currently, most of newly built telescopes have adaptive optical systems. Adaptive optical system is typically composed of three parts, wavefront sensing, wavefront correction and control. In this work, the wavefront sensing technology for adaptive optical system is treated. More specifically, shearing interferometers and Shack-Hartmann wavefront sensors are considered. Both of them are zonal wavefront sensors and measure the slope of a wavefront. . In this study, the shearing interferometer is made up of four right-angle prisms, whose relative sliding motions provide the lateral shearing and phase shifts necessary for wavefront measurement. Further, a special phase-measuring least-squares algorithm is adopted to compensate for the phase-shifting error caused by the variation in the thickness of the index-matching oil between the prisms. Shack-Hartmann wavefront sensors are widely used in adaptive optics for wavefront sensing. It uses an array of identical positive lenslets. And each lenslet acts as a subaperture and produces spot image. Distortion of an input wavefront changes the location of spot image. And the slope of a wavefront is obtained by measuring this relative deviation of spot image. Structures and measuring algorithms of each sensor will be presented. Also, the results of wavefront measurement will be given. Using these wavefront sensing technology, an adaptive optical system will be built in the future.

  • PDF

Three-Dimensional Measurement of Moving Surface Using Circular Dynamic Stereo

  • Lee, Man-Hyung;Hong, Suh-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.101.3-101
    • /
    • 2001
  • By setting a refractor with a certain angle against the optical axis of the CCD camera lens, the image of a measuring point recorded on the image plane is displaced by the corresponding amounts related to the distance between the camera and the measuring point. When the refractor that keeps the angle against the optical axis is rotated physically at high speed during the exposure of the camera, the image of a measuring point draws an annular streak. Since the size of the annular streak is inversely proportional to the distance between the camera and the measuring point, the 3D position of the measuring point can be obtained by processing the streak. In this paper, for one of the applications of our system, the measurement of a moving surface is introduced. In order to measure the moving surface, multi laser spots are projected on the surface of object. Each position of ...

  • PDF

Implementation of Optical-based Measuring Instrument for Overhead Contact Wire in Railway (전기철도 전차선로의 광학기반 형상 검측 하드웨어 구현)

  • Park, Young;Cho, Yong-Hyeon;Park, Hyun-June;Kwon, Sam-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.518-518
    • /
    • 2008
  • We propose an optical-based measuring instrument of catenary system in electric railway. This system was made to utilize line scan camera as inspecting system to measure the stagger and height of overhead contact wire in railway and composed with optical type source and FPGA-based image acquisition system with PCI slot. Vision acquisition software has been used for the application to programming interface for image acquisition, display, and storage with a frequency of sampling. The proposed optical-based measuring instrument to measure the contact wire geometry shows promising on-field applications for online condition motoring. Also, this system can be applied to measure the hight and stagger or other geometry of different type of overhead catenary system.

  • PDF

Multiple Channel Optical Power Meter for Optical Alignment using Hadamard Transform (하다마드변환을 이용한 광소자 정렬용 다채널 광파워메터)

  • Cho, Nam-Won;Yoon, Tae-Sung;Park, Jin-Bae;Kwak, Ki-Seok
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.5
    • /
    • pp.205-215
    • /
    • 2006
  • In this paper an optical power meter using Hadamard transform, which can be used in multiple channel optical elements alignment system, is proposed. A traditional optical power meter in multiple channel optical elements alignment system is able to judge how well the elements are aligned each other by measuring optical power of the first and the last two channels with at least two detectors. It has critical drawback that the alignment accuracy per channel is dependent on the number of detectors. The proposed optical power meter can get noise reduction by the Hadamard transform based multiplexing technique. The Hadamard transform based multiplexing technique using spatial light modulators is distinguished by the best enhancement of signal-to-noise ratio (SNR) for the reconstructed signals. Moreover, the noise reduction increases with increasing the order of multiplexing, namely the number of optical element channels. The proposed system is implemented by PDLC (Polymer Dispersed Liquid Crystal) mask which is operated by electric filed and generates optimal multiplexing patterns based on the Hadamard transform and single detector. It means that we obtain not only the each channel's optical power of multiple channel elements at once but also the best enhancement of SNR with single detector. Experimental results show that the proposed optical power meter is suitable for an active optical alignment system for multiple channel optical elements.

Coordinate Measuring Technique based on Optical Triangulation using the Two Images (두장의 사진을 이용한 광삼각법 삼차원측정)

  • 양주웅;이호재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.76-80
    • /
    • 2000
  • This paper describes a coordinate measuring technique based on optical triangulation using the two images. To overcome the defect of structured light system which measures coordinate point by point, light source is replaced by CCD camera. Pixels in CCD camera were considered as virtual light source. The overall geometry including two camera images is modeled. Using this geometry, the formula for calculating 3D coordinate of specified point is derived. In a word, the ray from a virtual light source was reflected on measuring point and the corresponding image point was made on the other image. Through the simulation result, validation of formula is verified. This method enables to acquire multiple points detection by photographing.

  • PDF

Measuring Method of In-plane Position Based On Reference Pattern (레퍼런스 패턴 기반 면내 위치 측정 방법)

  • Jung, Kwang Suk
    • Journal of Institute of Convergence Technology
    • /
    • v.2 no.1
    • /
    • pp.43-48
    • /
    • 2012
  • Generally, in-plane position of moving object is measured referring to the reference pattern attached to the object. From optical camera to magnetic reluctance probe, there are many ways detecting a variation of the periodical pattern. In this paper, the various operating principles developed for in-plane positioning are reviewed and compared each other. And, a novel method measuring large rotation as well as x, y linear displacements is suggested, including a detailed description of the overall system layout. It is a modified version of the surface encoder, which is a robust digital measuring method. From the surface encoder, the rotation of an object is measured indirectly through a compensated input of optical servo and independently of linear displacements. So, the operating range can be extended simply by enlarging the reference pattern, without magnifying the decoding units.

  • PDF