• Title/Summary/Keyword: optical manipulation

Search Result 52, Processing Time 0.026 seconds

Reducing Spectral Signature Confusion of Optical Sensor-based Land Cover Using SAR-Optical Image Fusion Techniques

  • ;Tateishi, Ryutaro;Wikantika, Ketut;M.A., Mohammed Aslam
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.107-109
    • /
    • 2003
  • Optical sensor-based land cover categories produce spectral signature confusion along with degraded classification accuracy. In the classification tasks, the goal of fusing data from different sensors is to reduce the classification error rate obtained by single source classification. This paper describes the result of land cover/land use classification derived from solely of Landsat TM (TM) and multisensor image fusion between JERS 1 SAR (JERS) and TM data. The best radar data manipulation is fused with TM through various techniques. Classification results are relatively good. The highest Kappa Coefficient is derived from classification using principal component analysis-high pass filtering (PCA+HPF) technique with the Overall Accuracy significantly high.

  • PDF

A Study on the Retina shaped Optical Path Shift Using the Prism

  • Kwon Yun Jung;Nam Sang Yep;Lee Sung Chang
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.699-702
    • /
    • 2004
  • This paper discusses about the mechanism of catching an image through an optical manipulation of each organizations in the eye, more specifically, mechanism of catching an image on a retina through a Camera and a Crystal Lens. In the retina, the macula roles as a fovea contrails and it leads the image which is about 3 mm to be shaped on there. However, even the macula may not properly function, our eyes still can catch the image by shifting the optical path to around of the macula, even if the sensitivity of the image is generally lower than the image on the macula. This paper proposes a method of shifting the shaped image on the retina by refracting the optical path through a prism located on the rear of a screen which consists of a 0.7' TFT LCD. Applying this method that throwing an image around on the macula, central visual disturbance patients among retinitis pimentos patients can expect to recover such a mechanism to catch an image.

  • PDF

Characterization of Microfluidic Channels using DVD Pick-up Fluorescent Scanner (광 픽업 방식 형광스캐너를 이용한 미소유체 특성 분석)

  • Yim, Vit;Kim, Jae-Hyun;Lee, Seung-Yop;Park, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.12
    • /
    • pp.1102-1106
    • /
    • 2008
  • Microfluidics deals with the behavior, precise control and manipulation of fluids at a micro scale. It has become increasingly prevalent in various applications such as biomedical applications (diagnostics, therapeutics, and cell/tissue engineering), inkjet head, and fuel cells etc. The issue of inspection and characterization of microfluidics has emerged as a major consideration in design, fabrication, and detection of microfluidic devices. In this paper, we characterize a diffusion based mixing in Y-microchannel using a fluorescent optical scanner based on a DVD pick-up module, which is widely used in optical storages. Using fluorescent dye, we measure the fluorescent intensity that represents the mixing patterns in Y-microchannel. We also compare these experimental results with computational fluid dynamics (CFD) simulation ones. It is shown that the proposed optical scanner can be used as an alternative measurement system with high performance and cost-effectiveness, compared to conventional optical tools such as epifluorescent microscopes using high resolution CCD camera and confocal microscopes with photomultiplier (PMT) detectors.

Deterministic manipulation and visualization of near field with ultra-smooth, super-spherical gold nanoparticles by atomic force microscopy

  • KIM, MINWOO;LEE, JOOHYUN;YI, GI-RA;LEE, SEUNGWOO;SONG, YOUNG JAE
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.111.1-111.1
    • /
    • 2015
  • As an alternative way to get sophisticated nanostructures, atomic force microscopy (AFM) has been used to directly manipulate building primitives. In particular, assembly of metallic nanoparticles(NPs) can provide various structures for making various metamolecules. As far, conventionally made polygonal shaped metallic NPs showed non-uniform distribution in size and shape which limit its study of fundamental properties and practical applications. In here, we optimized conditions for deterministic manipulation of ultra-smooth and super-spherical gold nanoparticles (AuNPs) by AFM. [1] Lowered adhesion force by using platinum-iridium coated AFM tips enabled us to push super-spherical AuNPs in linear motion to pre-programmed position. As a result, uniform and reliable electric/magnetic behaviors of assembled metamolecules were achieved which showed a good agreement with simulation data. Furthermore, visualization of near field for super-spherical AuNPs was also addressed using photosensitive azo-dye polymers. Since the photosensitive azo-dye polymers can directly record the intensity of electric field, optical near field can be mapped without complicated instrumental setup. [2] By controlling embedding depth of AuNPs, we studied electric field of AuNPs in different configuration.

  • PDF

Si Based Photoelectric Device with ITO/AZO Double Layer (ITO/AZO 투명전극을 이용한 Si 기반의 광전소자)

  • Jang, Hee-Joon;Yoon, Han-Joon;Lee, Gyeong-Nam;Kim, Joondong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.2
    • /
    • pp.85-89
    • /
    • 2018
  • In this study, functional transparent conducting layers were investigated for Si-based photoelectric applications. Double transparent conductive oxide (TCO) films were deposited on a Si substrate in the sequence of indium tin oxide (ITO) followed by aluminum-doped zinc oxide (AZO). First, we observed that the conductivity and transparency of AZO dominate the overall performance of the double TCO layers. Secondly, the double layered TCO film (consisting of AZO/ITO) deposited by sputtering was compared to a AZO-only film in terms of their optical and electrical properties. We prepared three different AZO films: ITO:3min/AZO:10min, ITO:5min/AZO:7min, and ITO:7min/AZO:4min. The results show that the optical properties (transmittance, absorbance, and reflection) can be controlled by the film composition. This may provide a significant pathway for the manipulation of the optical and electrical properties of photoelectric devices.

Robotic Guidance of Distal Screwing for Intramedullary Nailing Using Optical Tracking System (광학식측정장치를 이용한 금속정 내고정 수술의 원위부 나사체결을 위한 로보틱 유도 시스템)

  • An, Liming;Kim, Woo Young;Ko, Seong Young
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.4
    • /
    • pp.411-418
    • /
    • 2017
  • During the intramedullary nailing procedure, surgeons feel difficulty in manipulation of the X-ray device to align it to axes of nailing holes and suffer from the large radiation exposure from the X-ray device. These problems are caused by the fact the surgeon cannot see the hole's location directly and should use the X-ray device to find the hole's location and direction. In this paper, we proposed the robotic guidance of the distal screwing using an optical tracking system. To track the location of the hole for the distal screwing, the reference marker is attached to the proximal end of an intramedullary nail. To guide the drill's direction robustly, the 6-degree-of-freedom robotic arm is used. The robotic arm is controlled so as to align the drill guiding tool attached the robotic arm with the obtained the hole's location. For the safety, the robot's linear and angular velocities are restricted to the predefined values. The experimental results using the artificial bones showed that the position error and the orientation error were 0.91 mm and $1.64^{\circ}$, respectively. The proposed method is simple and easy to implement, thus it is expected to be adopted easily while reducing the radiation exposure significantly.

Electrical/Optical Characterization of Zn-Sn-O Thin Films Deposited through RF Sputtering

  • Park, Chan-Rok;Yeop, Moon-Su;Lee, Bo-Ram;Kim, Ji-Soo;Hwang, Jin-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.360-360
    • /
    • 2012
  • Zn-Sn-O (Zinc-Tin-Oxide; ZTO) thin films have been gaining extensive academic and industrial attentions owing to a semiconducting channel materials applicable to large-sized flat-panel displays. Due to the constituent oxides i.e., ZnO and SnO2, the resultant Zn-Sn-O thin films possess artificially controllable bandgaps and transmittances especially effective in the visible regime. The current approach employed RF sputtering in depositing the Zn-Sn-O thin films onto glass substrates at ambient conditions. This work places its main emphases on the electrical/optical features which are closely related to the combinations of processing variables. The electrical characterizations are performed using dc-based current-voltage characteristics and ac-based impedance spectroscopy. The optical constants, i.e., refractive index and extinction coefficient, are calculated through spectroscopic ellipsometry along with the estimation of bandgaps. The charge transport of the deposited ZTO thin films is based on electrons characteristic of n-type conduction. In addition to the basic electrical/optical information, the delicate manipulation of n-type conduction is indispensible in diversifying the industrial applications of the ZTO thin films as active devices in information and energy products. Ultimately, the electrical properties are correlated to the processing variables along with the underlying mechanism which largely determines the electrical and optical properties.

  • PDF

Design of an Infrared Multi-touch Screen Controller using Stereo Vision (스테레오 비전을 이용한 저전력 적외선 멀티 터치스크린 컨트롤러의 설계)

  • Jung, Sung-Wan;Kwon, Oh-Jun;Jeong, Yong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.2
    • /
    • pp.68-76
    • /
    • 2010
  • Touch-enabled technology is increasingly being accepted as a main communication interface between human and computers. However, conventional touchscreen technologies, such as resistive overlay, capacitive overlay, and SAW(Surface Acoustic Wave), are not cost-effective for large screens. As an alternative to the conventional methods, we introduce a newly emerging method, an optical imaging touchscreen which is much simpler and more cost-effective. Despite its attractive benefits, optical imaging touchscreen has to overcome some problems, such as heavy computational complexity, intermittent ghost points, and over-sensitivity, to be commercially used. Therefore, we designed a hardware controller for signal processing and multi-coordinate computation, and proposed Infrared-blocked DA(Dark Area) manipulation as a solution. While the entire optical touch control took 34ms with a 32-bit microprocessor, the designed hardware controller can manage 2 valid coordinates at 200fps and also reduce energy consumption of infrared diodes from 1.8Wh to 0.0072Wh.

Quantitative analysis of increase in depth of focus using Wigner distribution function (Wigner 분포 함수를 초점 심도 증가의 정량적 해석)

  • 장남영;강호정;은재정;최평석
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.6
    • /
    • pp.385-389
    • /
    • 2000
  • A phase-retardation function which was derived from Wigner distribution function (WDF) is used to increase a focal depth of a radially symmetric optical system. The WDF for one-dimensional signal is represented as a two-dimensional function of phasespace ($\chi,\zeta$), and a normalized irradiance is described as a form of the Strehl ratio (SR). The increase in the focal depth is accomplished by delivering a shearing tilt a that represents a characteristic of free space propagation with simple manipulation in the WDF space. In this paper we propose a method for evaluating the focal depth quantitatively by representing the phaseretardation function in terms of the focal depth term. In order to verify the validity of the proposed method, we compared the numerically analyzed result with that of J. Sochki's study. study.

  • PDF

Single Camera Omnidirectional Stereo Imaging System (단일 카메라 전방향 스테레오 영상 시스템)

  • Yi, Soo-Yeong;Choi, Byung-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.4
    • /
    • pp.400-405
    • /
    • 2009
  • A new method for the catadioptric omnidirectional stereo vision with single camera is presented in this paper. The proposed method uses a concave lens with a convex mirror. Since the optical part of the proposed method is simple and commercially available, the resultant omnidirectional stereo system becomes versatile and cost-effective. The closed-form solution for 3D distance computation is presented based on the simple optics including the reflection and the reflection of the convex mirror and the concave lens. The compactness of the system and the simplicity of the image processing make the omnidirectional stereo system appropriate for real-time applications such as autonomous navigation of a mobile robot or the object manipulation. In order to verify the feasibility of the proposed method, an experimental prototype is implemented.