• Title/Summary/Keyword: optical manipulation

Search Result 52, Processing Time 0.023 seconds

Development of Multiple Beam Optical Tweezers

  • Lee Dong-Jin;LeBrun Thomas W.;Balijepalli Arvind;Gorman JasonJ.;Gagnon Cedric;Hong Dae-Hie;Chang Esthe rH.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1501-1506
    • /
    • 2005
  • This paper presents the design of a multiple beam optical tweezers instrument used for manipulating micro/nano-sized components. The basic equations used in designing the optical tweezers are derived and the stable and time-sharing multiple beam optical tweezers are constructed with scanning mirrors. The laser beam passes through a series of optical components such as lenses, mirrors, and scanning mirrors, and overfills the entrance aperture of microscope objective, which gives a stable trap. By rotating the laser beam with the scanning mirror, the focal positions are translated in the specimen plane and multiple micro/nano-sized objects can be moved. The constructed optical tweezers is used to manipulate cells and liposomes simultaneously and to trap multiple nano-wires. The experiments prove that the developed optical tweezers can be a very versatile manipulation tool for studying gene therapy and nano device fabrication.

  • PDF

Review of Metasurfaces with Extraordinary Flat Optic Functionalities

  • Hee-Dong Jeong;Hyuntai Kim;Seung-Yeol Lee
    • Current Optics and Photonics
    • /
    • v.8 no.1
    • /
    • pp.16-29
    • /
    • 2024
  • This paper presents a comprehensive review of metasurface technology, focusing on its significant role in extraordinary flat optic functionalities. Traditional optical components, though optimized, are bulky and less congruent with modern integrated electromagnetic and photonic systems. Metasurfaces, recognized as the 2D counterparts of bulk metamaterials, offer solutions with their planar, ultra-thin, and lightweight structures. Their meta-atoms are adept at introducing abrupt shifts in optical properties, paving the way for high-precision light manipulation. By introducing the key design principles of these meta-atoms, such as the magnetic dipole and Pancharatnam-Berry phase, various applications in wavefront shaping and beam forming with simple amplitude/phase manipulation and advanced applications including retroreflectors, Janus metasurfaces, multiplexing of optical wavefronts, data encryption, and metasurfaces for quantum applications are reviewed.

Optical Manipulation of Droplets in a Microfluidic Platform (미세 유체 플랫폼에서의 광력을 이용한 액적의 연속적인 제어 기술의 개발)

  • Jung, Jin Ho;Cho, Hyunjun;Ha, Byung Hang;Destgeer, Ghulam;Sung, Hyung Jin
    • Journal of the Korean Society of Visualization
    • /
    • v.12 no.2
    • /
    • pp.13-17
    • /
    • 2014
  • In the present study, the optofluidic droplet manipulation in a microfluidic platform was demonstrated via theoretical and experimental approaches. Optical scattering force and gradient force were used to separate and trap droplets. Two types of droplets were generated by a T-junction method in the microfluidic channel. While they approach a test region where the optical beam illuminates the droplets, they were pushed by the optical scattering beam. The displacement by the laser beam is dependent on the refractive index of the droplets. By using the optical gradient force, the droplets can be trapped and coalesced. In order to bring the droplets in a direct contact, the optical gradient force was used to trap the droplets. A theoretical modeling of the coalescence was derived by combining the optical force and drag force on the droplet.

TOLERANCE ANALYSIS OF FIMS OPTICAL SYSTEM (과학위성 1호 원자외선 분광기 광학부의 TOLERANCE 분석)

  • ;;;;;;;;Jerry Edelstein
    • Journal of Astronomy and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.67-76
    • /
    • 2000
  • Far-ultraviolet IMaging Spectrograph(FIMS) is the main payload of the first Korean scientific satellite, KAISTSTA-4, which will be launched in 2002. The optical system of FIMS consists of parabolic cylinder mirror, slit, ellipsoidal reflection grating, and MCP to get spatial information as well as spectral information. Allowed ranges of manufacturing and positioning error are derived for each optical components to achieve the astronomical goals. In the procedure, graphical simplification is dedicated to understand sensitivity table and to derive range and precision of manipulation for each optical component. The result shows that precision of ${\mu}m$ for linear and of 2' for angular manipulation fulfills optical requirements.

  • PDF

Development of Biological Cell Manipulation System using Visual Tracking Method

  • Lee, Geunho;Kang, Hyun-Jae;Kwon, Sang-Joo;Park, Gwi-Tae;Kim, Byungkyu
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2911-2914
    • /
    • 2003
  • Conventionally, biological manipulations have been performed manually with long training and pretty low success rates. To overcome this problem, a novel biological manipulation system has been developed to manipulate biological cells without any interference of a human operator, In this paper, we demonstrate a development of tole-autonomous Cell Manipulation System (CMS) using an image processing at a remote site. The CMS consists of two manipulators, a plane stage, and an optical microscope. We developed deformable template-model-matching algorithm for micro objects and pattern matching algorithm of end effect for these manipulators in order to control manipulators and the stage. Through manipulation of biological cells using these algorithms, the performance of the CMS is verified experimentally.

  • PDF