• 제목/요약/키워드: optical loss

Search Result 969, Processing Time 0.022 seconds

Performance of CWDM Fabricated by the PLC-AWG Technology (평판형 AWG 기술을 이용한 광대역 파장다중화/역다중화 소자의 제작 및 특성)

  • Moon, H.M.;Kwak, S.C.;Hong, J.Y.;Lee, K.H.;Kim, D.H.;Kim, J.J.;Choi, S.Y.;Lee, J.G.;Lee, J.H.;Lim, K.G.;Kim, J.B.
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.3
    • /
    • pp.185-189
    • /
    • 2007
  • A novel technology for CWDM (Coarse Wavelength Division Multiplexer) utilizing a PLC (Planar Lightwave Circuit)-AWG (Arrayed Waveguide Grating) fabrication process is proposed. BPM (Beam Propagation Method) Simulation results on the employed parabolic-horn-type input slab waveguide of AWG and the performance of the 20 nm-channel spacing CWDM with flattened passband are presented. Waveguides of $0.75{\triangle}%$ have been used in this experiment and the insertion loss at the peak wavelength is 3.5 dB for a Gaussian spectrum and is 4.8 dB for a flat-top spectrum. The bandwidth at 3 dB is better than 10 nm and 13 nm for Gaussian and flat-top spectra, respectively.

Study on light extraction efficiency of a side-etched LED (측면 식각된 LED의 광추출 효율에 관한 연구)

  • Noh, Y.K.;Kwon, K.Y.
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.2
    • /
    • pp.122-129
    • /
    • 2003
  • In the case of a AIGalnP/GaP system rectangular parallelepiped high brightness LED which has side walls etched to be slanted off the vertical direction, we have studied the effects of lossy electrodes and material absorption and etching depth and angle of side walls on its light extraction efficiency. If LEDs have no electrodes, in order to obtain an 80% light extraction efficiency of a TIP (truncated inverted pyramid) LED, the side-etched LEDs should have an etching angle of 22$^{\circ}$~45$^{\circ}$ and an etching depth of 8~17% of a dice height and an absorption coefficient less than 1 $cm^{-1}$ / In case of etching depth of 16~39% of a dice height, we can obtain a 90% light extraction efficiency of a TIP LED. But when LEDs have two electrodes and no absorption loss, in order to obtain an 80% light extraction efficiency of a TIP LEBs, the side-etched LEDs should have an etching angle of 25$^{\circ}$-45$^{\circ}$ and an etching depth of 30~36% of a dice height. In case of etching depth of 57~71% of a dice height, we can obtain a 90% light extraction efficiency of a TIP LED.

Synthesis of Novel Pseudo-ceramide and Its Properties (신규 유사세라마이드의 합성과 그 특성)

  • Kim, Jin-Guk;Kim, Kyoung-Tae;Park, Sun-Hee;Lee, Bang-Yong;Kim, Ki-Ho;Kim, Young-Heui
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.34 no.1
    • /
    • pp.43-50
    • /
    • 2008
  • Ceramides, a constituent of stratum corneum lipids, play a crucial role in the formation and maintenance of the epidermal permeability barrier. As in many other skin disorders, atopic dermatitis and psoriasis show decrease and transformation of the ceramides. The application of ceramide has been demonstrated to be efficient in the repair of these skin disorders. Nevertheless, natural ceramides are still too expensive and small in quantity to be used as a cosmetic ingredient. Although a lot of pseudo-ceramides have been developed and on the market until now, those pseudo-ceramides did not fully meet the consumer's needs, therefore, there is still a demand for a novel pseudo-ceramides. We synthesized a novel pseudo-ceramide BPC-16 from 2-(2-amino-ethylamino)-ethanol(AEEA), which was characterized by structures having both amide bonds and hydroxyl groups as hydrophilic units, as well as two long alkyl chains. We formulated emulsion with BPC-16, cholesterol, stearic acid, and other components to make an emulsion. These emulsion showed a typical optical anisotropy on cross-polarized microscopy. This 'Maltese cross' appearance is a characteristic figure observed in concentric lamellar emulsion under cross-polarized microscopy. In cytotoxicity assay using MTT in monolayer and three dimension(3D) cell culture, a BPC-16 showed only negligible cytotoxicity up to the effective concentration for barrier repair and moisturization(less than 10 mM). In the measurement of TEWL, this BPC-16 showed significant recovery of water-retaining properties when it was topically applied to either SDS-induced dry skin or normal skin compared to that of base cream. This novel pseudo-ceramide BPC-16 showed as effective in skin barrier repair and moisturization as natural ceramides.

A Study on the Thermal Characteristics of a Coupler to Improve the Performance of Electrodeless Lamp (무전극 램프의 성능 향상을 위한 커플러의 열특성 연구)

  • Lee, Kye-Seung;Lee, Jae-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.6
    • /
    • pp.487-495
    • /
    • 2017
  • The thermal characteristics of the electrodeless lamp are one of the main factors that determine the design and performance of the lamp. The coupler changes the impedance characteristic by heat and its use temperature is usually within about $150^{\circ}C$. In this study, we observed the phenomenon when the coupler was exposed at a temperature of $150^{\circ}C$ or higher, which has not been discussed so far. Two types of coupler A and coupler B with different spacing between the inner tube and the coupler were analyzed for electrical, thermal and optical properties and deterioration characteristics with different heat and heat shielding conditions. First, the impedance of the system is obtained and used as a criterion for analyzing the electrical characteristics through it. The diameters of the two types of couplers are 1 mm, and the experimental result shows that the coupler diameter is 1 mm, which can cancel out the loss of the magnetic field strength. Therefore, based on these results, when the coupler is exposed to high temperature of about $200^{\circ}C$, the efficient design method corresponding thereto is proposed.

Accuracy Improvement of Laser Navigation System using FIS and Reliability (FIS와 신뢰도를 이용한 레이저 내비게이션의 정밀도 향상)

  • Jung, Eun-Kook;Kim, Jung-Min;Jung, Kyung-Hoon;Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.383-388
    • /
    • 2011
  • This paper presents to study the accuracy improvement of the laser navigation using FIS(fuzzy inference system) and the reliability. As wireless guidance system, the top-mounted laser with the laser navigation can rotate $360^{\circ}$ with phototransistor or other optical sensors that read the return signal from reflectors mounted at the perimeter of the workspace. The type of major existing guidance systems is a wire guidance system. Because they have high accuracy and fast response time, they are used to most industries. However, their installation cost is very expensive and maintenance is very difficult because their sensors are placed approximately 1 inch below the ground or embedded in the floor. To solve those problems, the laser navigation was developed as a wire guidance system. It does not need to reconstruct a floor or ground. And it can reduce costs of installation and maintenance because changing the layout is easy. However, it is difficult to apply to an industrial field because it is easily affected by disturbances which cause loss and damage of data, and has slow respond time. Therefore, we study the accuracy improvement of the laser navigation. The proposed method is a correction method using reliability of the laser navigation. here, reliability is calculated by FIS which is designed with the analyzed characteristics of the laser navigation. For performance comparison, we use original position data form the laser navigation and position data corrected by original reliability from the laser navigation. In experimental result, we verified that the performance of the proposed method compared the others is improved by about 50% or more.

A Study on Photovoltaic Panel Monitoring Using Sentinel-1 InSAR Coherence (Sentinel-1 InSAR Coherence를 이용한 태양광전지 패널 모니터링 효율화 연구)

  • Yoon, Donghyeon;Lee, Moungjin;Lee, Seungkuk
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.233-243
    • /
    • 2021
  • Photovoltaic panels are hazardous electronic waste that has heavy metal as one of the hazardous components. Each year, hazardous electronic waste is increasing worldwide and every heavy rainfall exposes the photovoltaic panel to become the source of heavy metal soil contamination. the development needs a monitoring technology for this hazardous exposure. this research use relationships between SAR temporal baseline and coherence of Sentinel-1 satellite to detected photovoltaic panel. Also, the photovoltaic plant detection tested using the difference between that photovoltaic panel and the other difference surface of coherence. The author tested the photovoltaic panel and its environment to calculate differences in coherence relationships. As a result of the experiment, the coherence of the photovoltaic panel, which is assumed to be a permanent scatterer, shows a bias that is biased toward a median value of 0.53 with a distribution of 0.50 to 0.65. Therefore, further research is needed to improve errors that may occur during processing. Additionally, the author found that the change detection using a temporal baseline is possible as the rate of reduction of coherence of photovoltaic panels differs from those of artificial objects such as buildings. This result could be an efficient way to continuously monitor regardless of weather conditions, which was a limitation of the existing optical satellite image-based photovoltaic panel detection research and to understand the spatial distribution in situations such as photovoltaic panel loss.

A Study on the Atmospheric Pressure Control of the VARTM Process for Increasing the Fiber Volume Fraction and Reducing Void (섬유부피분율 증가와 공극 감소를 위한 VARTM 공정의 대기압 제어에 관한 연구)

  • Kwak, Seong-Hun;Kim, Tae-Jun;Tak, Yun-Hak;Kwon, Sung-Il;Lee, Jea-Hyun;Kim, Sang-Yong;Lee, Jong-Cheon
    • Composites Research
    • /
    • v.34 no.2
    • /
    • pp.88-95
    • /
    • 2021
  • VARTM (Vacuum-assisted resin transfer molding) process is a low-cost process technology and affiliated with OoA (Out of Autoclave). Besides, it has been widely used in various fields. However, because of its lower quality than the autoclave process, it isn't easy to apply the VARTM process to the aerospace industry, which requires high reliability. The main problem of the VARTM process is the loss of mechanical properties due to the low fiber volume fraction and high void content in comparison to the autoclave. Therefore, many researchers have studied to reduce void and increase fiber volume fraction. This study examines whether the method of controlling atmospheric pressure could increase the fiber volume fraction and reduce void during the resin impregnation process. Reliability evaluation was confirmed by compressive strength test, fiber volume fraction analysis, and optical microscopy. As a result, it was confirmed that increasing the atmospheric pressure step by step in the VARTM process of impregnating the preform with resin effectively increases the fiber volume fraction and reduces void.

Performance comparison and evaluation of interferon-gamma assay kit for bovine tuberculosis diagnosis (소 결핵 진단을 위한 인터페론감마 검사 키트의 성능 비교 평가)

  • Hong, Leegon;Choi, Woojae;Ro, Younghye;Ahn, Sunmin;Kim, Eunkyung;Choe, Eunhee;Kim, Danil
    • Korean Journal of Veterinary Service
    • /
    • v.43 no.4
    • /
    • pp.201-209
    • /
    • 2020
  • In Korea, bovine tuberculosis (bTB) is a representative zoonotic disease that causes considerable economic loss. In determining the positive bTB, the ELISA method for examining the amount of interferon-gamma (IFN-γ) is included in Korea's diagnostic standard method. Recently, commercially available BIONOTE TB-Feron ELISA Plus (TB-Feron Plus) that detects IFN-γ has been introduced. However, since the scientific basis for the performance is limited, we evaluated performance by comparing it with the results of another IFN-γ ELISA assay kit (BOVIGAM®) certified by Office International des Epizooties. In our research, 42 positive blood samples preliminarily tested with a tuberculin skin test and/or BOVIGAM® and 54 negative blood samples collected from three bTB free farms were subjected to IFN-γ assay using the TB-Feron Plus and the BOVIGAM®, respectively. The result shows that the sensitivity, specificity and accuracy were 81.0% (34/42), 100% (54/54), 91.7% (88/96) in TB-Feron Plus kit and 78.6% (33/42), 100% (54/54), 90.6% (87/96) in BOVIGAM® kit, respectively. Moreover, the overall accordance percentage of the two kits was 99.0% (95/96) and there was almost perfect agreement between two assays (Kappa=0.977, P<0.0001). Furthermore, additional studies confirmed that elevated lymphocyte numbers in blood did not interfere with the results of the TB-Feron Plus kit. And, delayed time from sampling to culture decreased the optical density (OD) value. Therefore, we concluded that the TB-Feron Plus kit was not inferior to BOVIGAM® in performance. High lymphocyte numbers in blood did not impact on TB-Feron Plus results, while delayed time before culture interfered with OD value.

Fabrication of removable partial denture on scleroderma patient using 3-dimensional intraoral scanner (전신성 피부경화증 환자에서의 3차원 구강스캐너를 이용한 가철성 국소의치 제작 증례)

  • Kim, Ung-Gyu;Han, Jung-Suk;Yoon, Hyung-In;Yeo, In-Sung Luke
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.1
    • /
    • pp.116-125
    • /
    • 2021
  • A three-dimensional (3D) intraoral scanner, which is one of the major developments in digital dentistry, is widely used in fixed prosthodontics. The application of intraoral scanner is now increasing in removable prosthodontics. Sclerotic change induced by scleroderma causes the limitation of mouth opening and multiple loss of the teeth. Conventional prosthodontic procedures are challenging for patients with this disease. This study showed a case of digital approach to the removable prosthodontic treatment of a patient who had the scleroderma and the consequent microstomia. At the provisional stage, the optical impression of patient's oral structures was digitally obtained. Using a 3D printer, the provisional dentures were fabricated. After extraction of hopeless tooth, the definitive digital impression was taken and the metal frameworks were fabricated, based on the data acquired from the impression. The definitive removable partial dentures were completed and delivered to the patient, who was satisfied with the prostheses.

THE CURRENT STATUS OF BIOMEDICAL ENGINEERING IN THE USA

  • Webster, John G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.05
    • /
    • pp.27-47
    • /
    • 1992
  • Engineers have developed new instruments that aid in diagnosis and therapy Ultrasonic imaging has provided a nondamaging method of imaging internal organs. A complex transducer emits ultrasonic waves at many angles and reconstructs a map of internal anatomy and also velocities of blood in vessels. Fast computed tomography permits reconstruction of the 3-dimensional anatomy and perfusion of the heart at 20-Hz rates. Positron emission tomography uses certain isotopes that produce positrons that react with electrons to simultaneously emit two gamma rays in opposite directions. It locates the region of origin by using a ring of discrete scintillation detectors, each in electronic coincidence with an opposing detector. In magnetic resonance imaging, the patient is placed in a very strong magnetic field. The precessing of the hydrogen atoms is perturbed by an interrogating field to yield two-dimensional images of soft tissue having exceptional clarity. As an alternative to radiology image processing, film archiving, and retrieval, picture archiving and communication systems (PACS) are being implemented. Images from computed radiography, magnetic resonance imaging (MRI), nuclear medicine, and ultrasound are digitized, transmitted, and stored in computers for retrieval at distributed work stations. In electrical impedance tomography, electrodes are placed around the thorax. 50-kHz current is injected between two electrodes and voltages are measured on all other electrodes. A computer processes the data to yield an image of the resistivity of a 2-dimensional slice of the thorax. During fetal monitoring, a corkscrew electrode is screwed into the fetal scalp to measure the fetal electrocardiogram. Correlations with uterine contractions yield information on the status of the fetus during delivery To measure cardiac output by thermodilution, cold saline is injected into the right atrium. A thermistor in the right pulmonary artery yields temperature measurements, from which we can calculate cardiac output. In impedance cardiography, we measure the changes in electrical impedance as the heart ejects blood into the arteries. Motion artifacts are large, so signal averaging is useful during monitoring. An intraarterial blood gas monitoring system permits monitoring in real time. Light is sent down optical fibers inserted into the radial artery, where it is absorbed by dyes, which reemit the light at a different wavelength. The emitted light travels up optical fibers where an external instrument determines O2, CO2, and pH. Therapeutic devices include the electrosurgical unit. A high-frequency electric arc is drawn between the knife and the tissue. The arc cuts and the heat coagulates, thus preventing blood loss. Hyperthermia has demonstrated antitumor effects in patients in whom all conventional modes of therapy have failed. Methods of raising tumor temperature include focused ultrasound, radio-frequency power through needles, or microwaves. When the heart stops pumping, we use the defibrillator to restore normal pumping. A brief, high-current pulse through the heart synchronizes all cardiac fibers to restore normal rhythm. When the cardiac rhythm is too slow, we implant the cardiac pacemaker. An electrode within the heart stimulates the cardiac muscle to contract at the normal rate. When the cardiac valves are narrowed or leak, we implant an artificial valve. Silicone rubber and Teflon are used for biocompatibility. Artificial hearts powered by pneumatic hoses have been implanted in humans. However, the quality of life gradually degrades, and death ensues. When kidney stones develop, lithotripsy is used. A spark creates a pressure wave, which is focused on the stone and fragments it. The pieces pass out normally. When kidneys fail, the blood is cleansed during hemodialysis. Urea passes through a porous membrane to a dialysate bath to lower its concentration in the blood. The blind are able to read by scanning the Optacon with their fingertips. A camera scans letters and converts them to an array of vibrating pins. The deaf are able to hear using a cochlear implant. A microphone detects sound and divides it into frequency bands. 22 electrodes within the cochlea stimulate the acoustic the acoustic nerve to provide sound patterns. For those who have lost muscle function in the limbs, researchers are implanting electrodes to stimulate the muscle. Sensors in the legs and arms feed back signals to a computer that coordinates the stimulators to provide limb motion. For those with high spinal cord injury, a puff and sip switch can control a computer and permit the disabled person operate the computer and communicate with the outside world.

  • PDF