• Title/Summary/Keyword: optical fluctuation

Search Result 120, Processing Time 0.025 seconds

Super-Resolution Optical Fluctuation Imaging Using Speckle Illumination

  • Kim, Min-Kwan;Park, Chung-Hyun;Park, YongKeun;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.403.1-403.1
    • /
    • 2014
  • In conventional far-field microscopy, two objects separated closer than approximately half of an emission wavelength cannot be resolved, because of the fundamental limitation known as Abbe's diffraction limit. During the last decade, several super-resolution methods have been developed to overcome the diffraction limit in optical imaging. Among them, super-resolution optical fluctuation imaging (SOFI) developed by Dertinger et al [1], employs the statistical analysis of temporal fluorescence fluctuations induced by blinking phenomena in fluorophores. SOFI is a simple and versatile method for super-resolution imaging. However, due to the uncontrollable blinking of fluorophores, there are some limitations to using SOFI for several applications, including the limitations of available blinking fluorophores for SOFI, a requirement of using a high-speed camera, and a low signal-to-noise ratio. To solve these limitations, we present a new approach combining SOFI with speckle pattern illumination to create illumination-induced optical fluctuation instead of blinking fluctuation of fluorophore.. This technique effectively overcome the limitations of the conventional SOFI since illumination-induced optical fluctuation is possible to control unlike blinking phenomena of fluorophore. And we present the sub-diffraction resolution image using SOFI with speckle illumination.

  • PDF

Experimental Evaluation of Frequency Characteristics of Gain-saturated EDFA for Suppression of Signal Fluctuation in Terrestrial Free-space Optical Communication Systems

  • Yoo Seok, Jeong;Chul Han, Kim
    • Current Optics and Photonics
    • /
    • v.7 no.1
    • /
    • pp.28-32
    • /
    • 2023
  • Frequency characteristics of gain-saturated erbium-doped fiber amplifier (EDFA) are experimentally evaluated to mitigate the optical signal fluctuation induced by atmospheric turbulence in terrestrial freespace optical communication systems. Here, an acousto-optic modulator (AOM) is used to emulate optical signal fluctuations induced by atmospheric turbulence. The waveform which is generated in proportion to the refractive-index structural parameters is used to drive the AOM at various periodic frequencies. Thus, the dependence of the signal fluctuation suppression on the frequency is evaluated. The experiment is conducted using a periodic frequency sweep of the AOM driving voltage waveform and signal input power variation of the amplifier. It is observed that a low periodic frequency and high input signal power effectively suppress the optical signal fluctuation. This study evaluates the experimental results from the high-pass filter and gain-saturation characteristics of the EDFA.

Aero-optical transmitting effect in the compressible mixing layer

  • Ma, Handong;Gan, Caijun;Li, Lang
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.79-82
    • /
    • 2015
  • The handicap for investigating the aero-optical effect focuses on the accurate prediction on the index refraction fluctuation or density fluctuation. In recent years, with the development of CFD techniques and optical experimental techniques, the comprehension have developed on the aero-optical transmitting effect in many kinds of complex flow. This study mainly introduces the optical aberration in compressible mixing layer. And then the debates about the mechanism of aero-optical effects and assessment of image blur also present.

Measurement of the Relative Phase Fluctuation by Multiport-Homodyne Detection Method (Multiport-Homodyne 측정 방법에 의한 광신호의 상대적 위상 변화에 대한 연구)

  • 최준홍
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1990.02a
    • /
    • pp.242-247
    • /
    • 1990
  • By self-homodyne method we measured the relative phase fluctuation of a light wave. Balanced detection system can eliminate local oscillator excess noise and multiport detection makes it possible ot measure the phase change of the signal beam. Deriving the SB(Signal Beam) and the LO(Local Oscillator) from the same laser source, we find the SB maintain constant phase relative to that of the LO. We have introduced a phase fluctuation in the SB by modulating the beam path of the SB. The measured phase fluctuation agreed well with the predicted one, thereby we confirmed the reliability of our system.

  • PDF

Laser Phase Noise to Electronic Phase Noise Conversion in Optical Links Comprising Optical Resonators

  • Wang, Ziye;Yang, Chun;Xu, Weijie
    • Current Optics and Photonics
    • /
    • v.2 no.5
    • /
    • pp.395-399
    • /
    • 2018
  • This article investigates the mechanism of electronic signal phase noise degradation induced by laser phase noise in optical links comprising optical resonators. Through theoretical derivation, we find that the phase noise of the output electronic signal has the same spectral shape of optical intensity noise as the output of the optical resonator. We propose that the optical resonator transfers laser phase noise to light intensity fluctuation and then the intensity fluctuation is converted to electric phase noise through AM-PM conversion mechanism in the photodiode. An optical link comprising a Fabry-Perot resonator was constructed to verify the proposed mechanism. The experimental results agree with our theoretical prediction verifying that the supposition is correct.

Pulse Laser Power Stabilization Using PID Control Method (PID 제어기법을 이용한 펄스 레이저 출력 안정화에 관한 연구)

  • Ryoo, Hoon-Chul;Kwak, Seung-Woo;Kang, Dong-Won;Kim, Kyoung-Sik;Hahn, Jae-Won
    • Laser Solutions
    • /
    • v.9 no.2
    • /
    • pp.17-22
    • /
    • 2006
  • In this study, PID control method was applied to decrease the power fluctuation of the pulse laser which is one of the major processing variables in laser machining process. To stabilize the power fluctuation of the pulse laser, we averaged 10 pulse outputs of Nd:YAG laser operating in 10Hz using boxcar averager, and with taking this averaged output as an input signal, we conducted PID control using optical attenuator which is consisted of half wave plate attached on the stepping motor and polarizer. When PID control was not enabled, the power fluctuation was 4.71% and with PID control, the power fluctuation was 1.86% for 2 hours and 1 hour respectively. As a result, we stabilized the power fluctuation of the pulse laser by 60.5%

  • PDF

Pulse Laser Power Stabilization Using PID Control Method (PID 제어기법을 이용한 펄스 레이저 출력 안정화에 관한 연구)

  • Ryu, Hoon-Chul;Kwak, Seung-Woo;Kang, Dong-Won;Kim, Kyoung-Sik;Hahn, Jae-Won
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2006.06a
    • /
    • pp.89-96
    • /
    • 2006
  • In this study, PID control method was applied to decrease the power fluctuation of the pulse laser which is one of the major processing variables in laser machining process. To stabilize the power fluctuation of the pulse laser, we averaged 10 pulse outputs of Nd:YAG laser operating in 10Hz using boxcar averager, and with taking this averaged output as an input signal, we conducted PID control using optical attenuator which is consisted of half wave plate attached on the stepping motor and polarizer. When PID control was not enabled, the power fluctuation was 4.71% and with PID control, the power fluctuation was 1.86% for 2 hours and 1 hour respectively. As a result, we stabilized the power fluctuation of the pulse laser by 60.5%

  • PDF

Squeezing by damping in a driven coupled-oscillator system (구동된 결합 진동자 계에서의 감쇠에 의한 압축)

  • Hyunchu Nha;Lee, Jai-Hyung;Kyungwon An
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2001.02a
    • /
    • pp.248-249
    • /
    • 2001
  • A quantum-mechanical harmonic oscillator undergoes continuous amplitude fluctuation even in its ground state. This fluctuation, also known as the vacuum fluctuation, arises from the nonvanishing commutation .elation, [${\alpha}$, ${\alpha}$$\^$+/] = 1, where ${\alpha}$(${\alpha}$$\^$+/) is the annihilation (creation) operate. of the harmonic oscillator, One can make, however, the fluctuation of one quadrature amplitude decrease below the vacuum-state (or the coherent state) level at the cost of that of the other quadrature. (omitted)

  • PDF

Performance Evaluation of an All-optical Automatic Gain-controlled Erbium-doped Fiber Amplifier for Suppression of Signal Fluctuation in Terrestrial Free-space Optical Communication Systems (자유 공간 광통신 시스템에서 신호 변동 억제를 위한 전광 자동 이득 조절 어븀 첨가 광섬유 증폭기의 성능 평가)

  • Jeong, Yoo Seok;Kim, Chul Han
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.3
    • /
    • pp.99-105
    • /
    • 2022
  • We have evaluated the performance of an all-optical automatic gain-controlled (AGC) erbium-doped fiber amplifier (EDFA) to suppress the optical signal fluctuation induced by atmospheric turbulence in terrestrial free-space optical communication systems. In our measurements, the input power into the EDFA was set to be -30 dBm and -10 dBm to operate the amplifier in the small-signal and saturation regions, respectively. The fluctuations in the optical signal were emulated with an acousto-optic modulator driven with a sinusoidal voltage. From the measured results, we have found that an all-optical AGC EDFA could suppress the optical signal fluctuation effectively, as long as the EDFA operated in the small-signal region with a high feedback amplified spontaneous emission (ASE) power.