• Title/Summary/Keyword: optical element

Search Result 682, Processing Time 0.023 seconds

A Latency Optimization Mapping Algorithm for Hybrid Optical Network-on-Chip (하이브리드 광학 네트워크-온-칩에서 지연 시간 최적화를 위한 매핑 알고리즘)

  • Lee, Jae Hun;Li, Chang Lin;Han, Tae Hee
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.131-139
    • /
    • 2013
  • To overcome the limitations in performance and power consumption of traditional electrical interconnection based network-on-chips (NoCs), a hybrid optical network-on-chip (HONoC) architecture using optical interconnects is emerging. However, the HONoC architecture should use circuit-switching scheme owing to the overhead by optical devices, which worsens the latency unfairness problem caused by frequent path collisions. This resultingly exert a bad influence in overall performance of the system. In this paper, we propose a new task mapping algorithm for optimizing latency by reducing path collisions. The proposed algorithm allocates a task to a certain processing element (PE) for the purpose of minimizing path collisions and worst case latencies. Compared to the random mapping technique and the bandwidth-constrained mapping technique, simulation results show the reduction in latency by 43% and 61% in average for each $4{\times}4$ and $8{\times}8$ mesh topology, respectively.

Wide-band design of X-cut $LiNbO_{3}$ optcal modulator employing a ridge waveguide (Ridge형 도파로구조 X-cut $LiNbO_3$ 광변조기의 광대역 설계)

  • Huh, Hyun;Kim, Hee-Ju;Pan, Jae-Kyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.1
    • /
    • pp.89-95
    • /
    • 1997
  • X-cut y-propagation $LiNbO_{3}$ optical modulator is analyzed by finite element calculation. the purpose of this trial is the design of wide-bandwidth x-cut $LiNbO_{3}$ optical modulator with ridge wave guide, which was only applied to z-cut $LiNbO_{3}$ optical modulator. the simulation tool is examined by the comparison between our results and Becker's. And we consider the optimum position of optical waveguide to electrodes for decreasing the driving voltage. The calculated driving-voltage, characteristic impedance and microwave effective index at $1.3{\mu}{\textrm{m}}$ optical wavelength are 18 V.cm, $48.13{\Omega}$ and 2.168, respectively.

  • PDF

A cure process modeling of LED encapsulant silicone (LED 패키징용 실리콘의 경화공정 모델링)

  • Song, Min-Jae;Kim, Heung-Kyu;Kang, Jeong Jin;Kim, won-Hee
    • Design & Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.84-89
    • /
    • 2012
  • Silicone is recently used for LED chip encapsulment due to its good thermal stability and optical transmittance. In order to predict residual stress which causes optical briefringence and mechanical warpage of silicone, finite element analysis was conducted for both curing and cooling process during silicone molding. For analysis of curing process, a cure kinetics model was derived based on the differential scanning calorimetry(DSC) test and applied to the material properties for finite element analysis. Finite element simulation result showed that the curing as well as the cooling process should be designed carefully so as to reduce the residual stress although the cooling process plays the bigger role than curing process in determining the final residual stress state. In addition, birefringence experiment was carried out in order to observe residual stress distribution. Experimental results showed that cooling-induced birefringence was larger than curing-induced birefringence.

  • PDF

Study on the Thermal Deformation of the Air-conditioner Indoor Unit Assembly Using 3D Measurement and Finite Element Analysis (에어컨 실내기 사출 조립품의 열 변형 3D측정과 유한요소해석)

  • Hong, Seokmoo;Hwang, Jihoon;Kim, Cheulgon;Eom, Seong-uk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.251-255
    • /
    • 2015
  • Thermal deformation, such as bending and twisting, occurs among the polymer parts of air-conditioner indoor units because of repetitive temperature change during heating operation. In this study, a numerical method employing finite-element analysis to efficiently simulate the thermal deformation of an assembly is proposed. Firstly, the displacement of an actual assembly produced by thermal deformation was measured using a 3D optical measurement system. The measurement results indicated a general downward sag of the assembly, and the maximum displacement value was approximately 1 mm. The temperature distribution was measured using a thermographic camera, and the results were used as initial-temperature boundary conditions to perform temperature-displacement analysis. The simulation results agreed well with the measured data. To reduce the thermal deformation, the stiffness increased 100%. As the results, the maximum displacement decreased by approximately 5.4% and the twisting deformation of the holder improved significantly.

A Study on the Characteristic of Twisted Nematic Liquid Crystal Cell by Three Dimensional Finite Element Method (3차원 유한요소법을 이용한 TN 모드 액정 셀 특성 분석 연구)

  • 정주식;윤상호;이철수;윤석인;원태영
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.12
    • /
    • pp.1071-1079
    • /
    • 2002
  • This paper reports a methodology and application lot calculating distribution of the director in a liquid crystal cell by a numerical technique. To calculate distribution of the director, we applied a three dimensional finite element method (FEM) and calculated the distributions of electric potential and director in the liquid crystal cell. We have considered the free-energy density in the bulk of liquid crystal cell and calculated the switching property by the Ericksen-Leslie equation and the Laplace equation. We have calculated the optical transmission with distribution of the director by Berreman's method and confirmed the threshold voltage and the response time.

Development of Finite Element Model for Dynamic Characteristics of MEMS Piezo Actuator in Consideration of Semiconductor Process (반도체 공정을 고려한 유한요소해석에 의한 MEMS 압전 작동기의 동특성 해석)

  • Kim, Dong Woohn;Song, Jonghyeong;An, Seungdo;Woo, Kisuk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.454-459
    • /
    • 2013
  • For the purpose of rapid development and superior design quality assurance, sophisticated finite element model for SOM(Spatial Optical Modulator) piezo actuator of MOEMS device has been developed and evaluated for the accuracy of dynamics and residual stress analysis. Parametric finite element model is constructed using ANSYS APDL language to increase the design and analysis performance. Geometric dimensions, mechanical material properties for each thin film layer are input parameters of FE model and residual stresses in all thin film layers are simulated by thermal expansion method with psedu process temperature. $6^{th}$ mask design samples are manufactured and $1^{st}$ natural frequency and 10V PZT driving displacement are measured with LDV. The results of experiment are compared with those of the simulation and validate the good agreement in $1^{st}$ natural frequency within 5% error. But large error over 30% occurred in 10V PZT driving displacement because of insufficient PZT constant $d_{31}$ measurement technology.

  • PDF

Image Quality Evaluation and Tolerance Analysis for Camera Lenses with Diffractive Element

  • Lee, Sang-Hyuck;Jeong, Ho-Seop;Jin, Young-Su;Song, Seok-Ho;Park, Woo-Je
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.105-111
    • /
    • 2006
  • A novel image quality evaluation method, which is based on combination of the rigorous grating diffraction theory and the ray-optic method, is proposed. It is applied for design optimization and, tolerance analysis of optical imaging systems implementing diffractive optical elements (DOE). The evaluation method can predict the quality and resolution of the image on the image sensor plane through the optical imaging system. Especially, we can simulate the effect of diffraction efficiencies of DOE in the camera lenses module, which is very effective for predicting different color sense and MTF performance. Using this method, we can effectively determine the fabrication tolerances of diffractive and refractive optical elements such as the variations' in profile thickness, and the shoulder of the DOE, as well as conventional parameters such as decenter and tilt in optical-surface alignments. A DOE-based 2M-resolution camera lens module designed by the optimization process based on the proposed image quality evaluation method shows ${\sim}15%$ MTF improvement compared with a design without such an optimization.

Telephotolens design with refractove/diffractive hybrid lens

  • Hong, Young-Ghi;Kim, Sun-Il;Yeo, Wan-Gu;Lee, Chul-Koo
    • Journal of the Optical Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.74-80
    • /
    • 1997
  • 300mm F/4.0 telephotolens with diffractive hybrid lens was designed, and its optical performance was tested and compared with a traditional lens system. DOE(Diffractive Optical Element) reconstructs wavefronts using wave phenomena of light to focus the incident light onto the focal point and has negative Abbe number while a traditional lens uses geometrical phenomena of light and has positive Abbe number. Therefore, a diffractive hybrid lens containing both refractive and diffractive elements can remarkably correct chromatic aberration and spherical aberration of an optical system. We investigated and analyzed the optical properties of a diffractive hybrid lens for the visible spectrum, and we used a difractive hybrid lens to design and evaluate a 300mm F/4.0 telephotolens without the special LD(Low Dispersive) glass lens which is costly and difficult to manufacture. Most traditional telephotolenses use the special LD glass for chromatic aberration correcton. Optical performance tests such as resolution and characteristics of aberration of both lens systems using a diffractive hybrid lens and traditional lens were performed.

A Design of Optimal Masks in Hadamard Transform Spectrometers (하다마드 분광계측기의 마스크 설계)

  • 박진배
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.239-248
    • /
    • 1995
  • The method of increasing signal to noise ratio (SNR) in a Hadamard transform spectrometer (HTS) is multiplexing. The multiplexing is executed by a mask. Conventional masks are mechanical or electro-optical. A mechanical mask has disadvantages of jamming and misalignment. A stationary electro-optical mask has a disadvantage of information losses caused by spacers which partition mask elements. In this paper, a mixed-concept electro-optical mask (MCEOM) is developed by expanding the length of a spacer to that of lon-off mask element. An MCEOM is operated by stepping a movable mask. 2N measurements are required for N spectrum estimates. The average mean square error (AMSE) using MCEQM is equal to that using a stationary electro-optical mask without spacers for large N. The cost of manufacturing an MCEOM is lower than that of producing a conventional electro-optical mask because an MCEOM needs only (N + 1)/2 on-off mask elements whereas the con¬ventional electro-optical mask needs N on-off mask elements. There are no information losses in the spectrometers having an MCEOM.

  • PDF