• Title/Summary/Keyword: optical communications

Search Result 924, Processing Time 0.024 seconds

High-Performance Low-Complexity Iterative BCH Decoder Architecture for 100 Gb/s Optical Communications (100 Gb/s급 광통신시스템을 위한 고성능 저면적 반복 BCH 복호기 구조)

  • Yang, Seung-Jun;Yeon, Jaewoong;Lee, Hanho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.140-148
    • /
    • 2013
  • This paper presents a iterative Bose-Chaudhuri-hocquenghem (i-BCH) code and its high-speed decoder architecture for 100 Gb/s optical communications. The proposed architecture features a very high data processing rate as well as excellent error correction capability. The proposed 6-iteration i-BCH code structure with interleaving method allows the decoder to achieve 9.34 dB net coding gain performance at $10^{-15}$ decoder output bit error rate to compensate for serious transmission quality degradation. The proposed high-speed i-BCH decoder architecture is synthesized using a 90-nm CMOS technology. It can operate at a clock frequency of 430 MHz and achieve a data processing rate of 100 Gb/s. Thus, it has potential applications in next generation forward error correction (FEC) schemes for 100 Gb/s optical communications.

A Turbo-Coded Modulation Scheme for Deep-Space Optical Communications (Deep-Space 광통신을 위한 터보 부호화 변조 기법)

  • Oh, Sang-Mok;Hwang, In-Ho;Lee, Jeong-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2C
    • /
    • pp.139-147
    • /
    • 2010
  • A novel turbo coded modulation scheme, called turbo-APPM, for deep space optical communications is constructed. The constructed turbo-APPM is a serial concatenations of turbo codes, an accumulator and a pulse position modulation (PPM), where turbo codes act as an outer code while the accumulator and the PPM act together as an inner code. The generator polynomial and the puncturing rule for generating turbo codes are chosen to show the low bit error rate. At the receiver, the joint decoding is performed by exchanging soft information iteratively between the inner decoder and the outer decoder. In the outer decoder, a local iterative decoding for turbo codes is conducted before transferring soft information to the inner decoder. Poisson distribution is used to model the deep space optical channel. It is shown by simulations that the constructed turbo-APPM provides coding gains over all previously proposed schemes such as LDPC-APPM, RS-PPM and SCPPM.

Transition-based Data Decoding for Optical Camera Communications Using a Rolling Shutter Camera

  • Kim, Byung Wook;Lee, Ji-Hwan;Jung, Sung-Yoon
    • Current Optics and Photonics
    • /
    • v.2 no.5
    • /
    • pp.422-430
    • /
    • 2018
  • Rolling shutter operation of CMOS cameras can be utilized in optical camera communications in order to transmit data from an LED to mobile devices such as smart-phones. From temporally modulated light, a spatial flicker pattern is obtained in the captured image, and this is used for signal recovery. Due to the degradation of rolling shutter images caused by light smear, motion blur, and focus blur, the conventional decoding schemes for rolling shutter cameras based on the pattern width for 'OFF' and 'ON' cannot guarantee robust communications performance for practical uses. Aside from conventional techniques, such as polynomial fitting, histogram equalization can be used for blurry light mitigation, but it requires additional computation abilities resulting in burdens on mobile devices. This paper proposes a transition-based decoding scheme for rolling shutter cameras in order to offer simple and robust data decoding in the presence of image degradation. Based on the designed synchronization pulse and modulated data symbols according to the LED dimming level, the decoding process is conducted by observing the transition patterns of two sequential symbol pulses. For this, the extended symbol pulse caused by consecutive symbol pulses with the same level determines whether the second pulse should be included for the next bit decoding or not. The proposed method simply identifies the transition patterns of sequential symbol pulses other than the pattern width of 'OFF' and 'ON' for data decoding, and thus, it is simpler and more accurate. Experimental results ensured that the transition-based decoding scheme is robust even in the presence of blurry lights in the captured image at various dimming levels

Properties and Fabrications of 5 Gbps level LiNbO$_3$ Optical Phase Modulator for a Broadband Optical Communications (광대역 광통신용 5 Gbps급 LiNbO$_3$광위상변조기 제작 및 특성)

  • 김성구;윤형도;윤대원;박계춘;강성준
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.11
    • /
    • pp.91-99
    • /
    • 1998
  • A 5Gbps LiNbO$_3$ optical phase modulator was designed, packaged and it's properties were characterized for optical communications. The APE(annealed proton exchange) method was employed for the optical waveguide and the electrode of ACPS (asymmetric coplanar strip) type was formed by electro-plating on LiNbO$_3$ for applying microwave signal with a dimension of width 18${\mu}{\textrm}{m}$, gap 9${\mu}{\textrm}{m}$ and length 50mm. The fabricated single-moded modulator operated at a 1550nm wavelength exhibits its modulation bandwidth, insertion loss and driving voltage of 7㎓, 3.0dB and 6V, respectively.

  • PDF

High-Performance Time-Code Diversity Scheme for Shore-to-Sea Maritime Visible-Light Communication

  • Kim, Hyeongji;Sewaiwar, Atul;Chung, Yeon-Ho
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.514-520
    • /
    • 2015
  • This paper presents a novel shore-to-sea maritime data transmission system based on time-code diversity, using visible light in maritime environments to overcome the limitations of conventional maritime wireless communications. The proposed system is primarily comprised of existing LED-based lighthouses and maritime transceivers (marine beacons, buoys, etc.), and thus is considered cost-effective in terms of implementation. We first analyze maritime visible-light communications on the basis of the unique properties of a maritime environment, i.e. sea states (wave height, wind speed, etc.), plus atmospheric turbulence, using the Pierson-Moskowitz (PM) and JONSWAP (JS) spectrum models. It is found that the JS model outperforms the PM model, and that the coverage distance depends on the LED power and sea states. To combat maritime fading conditions that significantly degrade performance and coverage distance, we propose a time-code diversity (TCD) scheme in which the delayed versions of the original data are retransmitted using orthogonal Walsh codes. This TCD scheme is found to be superior, in that it offers three orders of magnitude in terms of BER performance, compared to a conventional (non-TCD) transmission scheme. The proposed scheme is robust and efficient in overcoming the effect of impairments present in maritime environments with a BER of approximately $10^{-5}$and a data rate of 100 Kbps at a distance of 1 km.

The Transmission of Random Clock Data using FPGA (FPGA를 이용하여 다양한 클럭 데이터 전송)

  • Kim, Yun-Kwon;Shin, Hyun-Sung;Jeong, Je-Myung
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.385-387
    • /
    • 2006
  • We made the logic that can transmit the service data and clock of interest by using the optical signal and demodulate the original signal at the receiving end. Because We can interface the all communications equipment to which We intended to send the signal. We can modulate the dock and clocked data using optical signal and then transmit the original optical signal to the receiving end, finally, arbitrarily control the traffic between ports.

  • PDF

Problems of Acousto-Optic Tunable Filters for WDM Optical Switching

  • Song, G. Hugh
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1995.06a
    • /
    • pp.210-215
    • /
    • 1995
  • Technology development toward the use of LiNbO3-based acoustic tunable filters as WDM 2$\times$2 cross-connect switches is reviewed. Recenly, it was found that a fundamental behavior of multi-wavelength Bragg scattering critically affects the crosstalk performance of the acousto-optic tunable filter. We revuew serveral reported methods of overcoming the performance degradation. We will eventually ask whether the device is up to task of WDM optical switching.

  • PDF

Optical Power Transfer of Grating - Assisted Directional Coupler with Three - Guiding Channels : TM modes Case

  • Ho, Kwang-Chun;Ho, Kwang-Soo
    • Journal of the Optical Society of Korea
    • /
    • v.8 no.4
    • /
    • pp.149-155
    • /
    • 2004
  • Newly developed modal transmission-line theory(MTLT) is used to analyze rigorously the optical power distribution in grating-assisted directional couplers(GADCs) with three guiding channels. By defining a novel coupling efficiency ${\eta}$ amenable to the rigorous analytical solutions of modal transmission-line theory, we explicitly evaluate the power coupling and distribution of TM modes. The results reveal that the incident power is sensitively partitioned through three output channels in terms of such grating parameters as the grating period, the duty cycle, and the operating wavelength.