• Title/Summary/Keyword: optical annealing

Search Result 648, Processing Time 0.036 seconds

Effect of Annealing in Nitrogen Atmosphere on the Characteristics of Ga Doped ZnO Films (Ga doped ZnO 박막의 질소분위기 열처리에 따른 특성 변화)

  • Heo, Sung-Bo;Lee, Young-Jin;Lee, Hak-Min;Kim, Sun Kwang;Kim, Yu Sung;Kong, Young Min;Kim, Dae-Il
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.6
    • /
    • pp.338-342
    • /
    • 2011
  • Ga doped ZnO (GZO) thin films were deposited with RF magnetron sputtering on glass substrate and then the effect of post deposition annealing at nitrogen atmosphere on the structural, optical and electrical properties of the films was investigated. The post deposition annealing process was conducted for 30 minutes at different temperature of 150, 300 and $450^{\circ}C$, respectively. As increase annealing temperature, GZO films show the increment of the prefer orientation of ZnO (002) diffraction peak in the XRD pattern and the optical transmittance in a visible wave region was also increased, while the electrical sheet resistance was decreased. The figure of merit obtained in this study means that GZO films which vacuum annealed at $450^{\circ}C$ have the highest optoelectrical performance in this study.

Development of machining technology for non-continuous pattern removing plastic deformation around pattern (패턴 주변의 소성변형현상을 제거한 고품위 불연속패턴 가공기술 개발)

  • Jeon, Eun-chae;Je, Tae-Jin;Chang, Sunghwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.6
    • /
    • pp.1-6
    • /
    • 2010
  • Patterned optical components are widely used for optical products such as LCD and lighting. Since CCFL was used as a light source in the products, prism films having linear continuous optical patterns were widely used. However, LED which is a dot light source is popular recently, therefore, the optical products need new optical components having non-continuous optical patterns. Indentation machining method is a powerful method for machining of non-continuous pattern. When a copper mold and a brass mold were machined by this method, severe plastic deformation called pile-up was observed around the patterns. Since pile-up has negative relationship to ductility, this deformation can be eliminated by annealing treatment which makes the materials ductile. No plastic deformation occurred when machined after annealing at $600{^{\circ}C}$ and $575{^{\circ}C}$ for copper and brass, respectively. Finally, non-continuous optical patterns with high quality were machined on a copper mold and a brass mold successively.

Effects of Vacuum Annealing on the Optical Properties of Sputtered Vanadium Oxide Thin Films (스퍼터된 바나듐 산화막의 광학적 특성에 미치는 진공 어닐링의 효과)

  • Lee, Seung-Chul;Whang, In-Soo;Choi, Bok-Gil;Choi, Chang-Kyu;Kim, Sung-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.783-786
    • /
    • 2003
  • Thin films of vanadium oxide(VOx) have been deposited by r.f. magnetron sputtering from $V_2O_5$ target in gas mixture of argon and oxygen. The oxygen/(oxygen+argon) partial pressure ratio of 0% and 8% is adopted. Crystal structure and optical properties of films sputter-deposited under different oxygen gas pressures and in situ annealed in vacuum at $400^{\circ}C$ for 1h and 4h are characterized through XRD and optical absorption measurements. The films as-deposited are amorphous, but $0%O_2$ films annealed for time longer than 4h and $8%O_2$ films annealed for time longer than 1h are polycrystalline. The optical transmission of the films annealed in vacuum decreases considerably than the as-deposited films and the optical absorption of all the films increases rapidly at wavelength shorter than about 550nm. Indirect and direct optical band gaps were decreased with increasing the annealing time.

  • PDF

Investigation of Structural and Optical Characteristics of In2Se3 Thin Films Fabricated by Thermal Annealing (열처리로 제조된 In2Se3 박막의 구조 및 광학적 특성 연구)

  • Park, Jae-Hyoug;Kim, Dae-Young;Park, Gwang-Hun;Han, Myung-Soo;Kim, Hyo-Jin;Shin, Jae-Cheol;Ha, Jun-Seok;Kim, Kwang-Bok;Ko, Hang-Ju
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.3
    • /
    • pp.136-141
    • /
    • 2012
  • We report investigation of structural and optical characteristics of $In_2Se_3$ thin films fabricated by thermal annealing process. Indium (In) is deposited on substrates by sputtering methods and $In_2Se_3$ thin films are fabricated by thermal annealing it with selenium vapor. The annealing temperature was changed from $150^{\circ}C$ to $400^{\circ}C$. We observe formation and phase changes of $In_2Se_3$ thin films with increase of annealing temperature. Conglomeration of In is observed at low annealing temperature (${\leq}150^{\circ}C$). $In_2Se_3$ phases are started to form at $200^{\circ}C$ and ${\gamma}-In_2Se_3$ phase form at $350^{\circ}C$. High-quality ${\gamma}-In_2Se_3$ thin film with wurtzite structure is obtained at $400^{\circ}C$ of annealing temperature. Furthermore, we confirm that band gaps of $In_2Se_3$ thin films are increased according to increase of annealing temperature. Optical band gap of high-quality ${\gamma}-In_2Se_3$ is found to be 1.796eV.

Structural and Optical Properties of Self-assembled InAs Quantum Dots as a Function of Rapid Thermal Annealing Temperature (급속 열처리 온도에 따른 자발 형성된 InAs 양자점의 구조 및 광학 특성)

  • Cho, Shin-Ho
    • Korean Journal of Materials Research
    • /
    • v.16 no.3
    • /
    • pp.183-187
    • /
    • 2006
  • We present the effects of rapid thermal annealing (RTA) temperature on the structural and optical properties of self-assembled InAs quantum dot (QD) structures grown on GaAs substrates by molecular beam epitaxy (MBE). The photoluminescence (PL) measurements are performed in a closed-cycle refrigerator as a function of temperature for the unannealed and annealed samples. RTA at higher temperature results in the increase in island size, the corresponding decrease in the density of islands, and the redshift in the PL emission from the islands. The temperature dependence of the PL peak energy for the InAs QDs is well expressed by the Varshni equation. The thermal quenching activation energies for the samples unannealed and annealed at $600^{\circ}C$ are found to be $25{\pm}5meV$ and $47{\pm}5$ meV, respectively.

A Study on the Electrical and Optical Properties of CdS Thin Film by Annealing for Solar Cell (태양전지용 CdS 박막의 열처리에 따른 전기 및 광학적 특성에 관한 연구)

  • Park, Jung-Cheul;Chu, Soon-Nam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.11
    • /
    • pp.999-1003
    • /
    • 2009
  • In this paper, CdS thin films well-known to window layer for solar cell were fabricated by means of vacuum evaporation method treated with different substrate heating. During film fabrication the substrates were heated at 50, 75 and $100^{\circ}C$, respectively. The thin films were then annealed at $200^{\circ}C$ in atmosphere, and the electrical and optical properties were investigated. By annealing, the hexagonal structure of films was changed into cubic structure. Their transmissivity was also increased and moved to longer wave band. It was shown that the film fabricated with the substrate heat-treated at $50^{\circ}C$ had the lowest resistivity.

Thin Film Deposition of Tb3Al5O12:Ce by Pulsed Laser Ablation and Effects of Low-temperature Post-annealing

  • Kim, Kang Min;Chung, Jun Ho;Ryu, Jeong Ho
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.76-79
    • /
    • 2012
  • $Tb_3Al_5O_{12}:Ce$ (TAG:Ce) thin films were successfully deposited by a pulsed laser ablation method on a quartz substrate, and low-temperature post-annealing effects on luminescent properties were investigated in detail. TAG:Ce thin films were analyzed by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and photoluminescence spectroscopy. The as-deposited films were amorphous, and post-annealing above $700^{\circ}C$ was required for crystallization. The post-annealed TAG:Ce thin films showed strong and broad emission bands around 542 nm and excitations at 451 nm, which all corresponded to transitions between the 4f ground level to the $5d^1$ excited levels of Ce ion.

Similar and rotation invariant optical pattern recognition characteristics of SA-MPOF (SA-MPOF의 유사 및 회전불변 광패턴인식 특성)

  • Yeun, Jin-Seon;Lee, Yeon-Seon;Kim, Nam;Um, Joo-Uk;Park, Han-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.4
    • /
    • pp.855-868
    • /
    • 1996
  • In this paper, multiplhase only filter(MPOFs) are designed using simulated annealing algorithm. These filters have excellent recognition characteristics for similar patterns or rotated patterns and enhance optical efficiency as well as spatial-bandwidth product by deleting mirror image. As the result of computer simulation to certify recogntion characteristics of similar patterns, simulated annealing-MPOF(SA-MPOF) has superior discrimination and higher correlation peak values than cosine binary phase only filters(CBPOF) and simpulated annealing-BPOF (SA-BPOF). THe filter having training process for rotated patterns of arbitraty possible angle can overcome that phase only filter(POF) and CBPOF can't recognize rotated input patterns.

  • PDF

Annealing Effect of the Chalcogenide Thin Film for Holographic Grating Formation (홀로그래픽 격자 형성에 대한 칼코게나이드 박막의 열처리 효과)

  • Park, Jung-Il;Shin, Kyung;Lee, Jung-Tae;Lee, Young-Jong;Chung, Hong-Bay
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.8
    • /
    • pp.736-739
    • /
    • 2003
  • We prepared the chalcogenide As$\_$40/Ge$\_$10/Se$\_$15/S$\_$35/, Se$\_$75/Ge$\_$25/ thin film. Holographic grating was formed by the He-Ne laser( λ =633 nm). Annealing at 100$^{\circ}C$ and 200$^{\circ}C$ has been used to change the optical property of chalcogenide thin films for holographic grating formation. As the results, large variation of the optical property was generated at the As$\_$40/Ge$\_$10/Se$\_$15/S$\_$35/ chalcogenide film. Diffraction efficiency of the As$\_$40/Ge$\_$10/Se$\_$15/S$\_$35/ film has been enhanced about three times