SAR데이터는 기상이나 일조량의 제약을 받지 않고 능동적으로 자료를 취득할 수 있다는 장점 때문에 지표면의 시계열 분석자료로서 활용성이 높고, 재해와 같은 돌발상황의 경우에 신속하게 자료를 취득할 수 있다. 본 연구에서는 JERS-1 SAR 영상의 L-밴드 데이터로부터 InSAR 방법과 DInSAR 기법을 이용하여 DEM을 추출하고자 하였다. 추출한 coherence, interferogram 영상을 분석한 결과, DInSAR 3-pass 방식을 이용할 경우 InSAR 방식에 비해 비교적 안정된 coherence값을 가지는 것을 확인할 수 있었다 축척 1:5000 수치지형도에서 추출한 DEM을 기준자료로 하여 SAR 영상으로부터 추출한 DEM의 정확도를 평가하였으며, 안테나 간의 기선장이 DEM의 정확도에 크게 영향을 미치는 것을 확인할 수 있었다.
Spatial information could be obtained from spaceborne high resolution optical and synthetic aperture radar(SAR) images. However, some satellite images do not provide physical sensor information instead, rational polynomial coefficients(RPC) are available. The objectives of this study are: (1) 3-dimensional ground coordinates were computed by applying rational function model(RFM) with the RPC for the stereo pair of Ikonos images and their accuracy was evaluated. (2) Interferometric SAR(InSAR) was applied to JERS-1 images to generate DEM and its accuracy was analysis. (3) Quality of the DEM generated automatically also analyzed for different types of terrain in the study site. The overall accuracy was evaluated by comparing with GPS surveying data. The height offset in the RPC was corrected by estimating bias. In consequence, the accuracy was improved. Accuracy of the DEMs generated from InSAR with different selection of GCP was analyzed. In case of the Ikonos images, the results show that the overall RMSE was 0.23327", 0.l1625" and 13.70m in latitude, longitude and height, respectively. The height accuracy was improved after correcting the height offset in the RPC. i.e., RMSE of the height was 1.02m. As for the SAR image, RMSE of the height was 10.50m with optimal selection of GCP. For the different terrain types, the RMSE of the height for urban, forest and flat area was 23.65m, 8.54m, 0.99m, respectively for Ikonos image while the corresponding RMSE was 13.82m, 18.34m, 10.88m, respectively lot SAR image.
본 연구에서는 고해상도 위성영상인 TerraSAR-X와 WorldView-2 등을 융합하여 표적의 특성을 고려한 표적군(Group of targets) 검출을 수행하였다. 관심 대상으로 하는 표적은 고정되어 있으며, 군(Group)을 이루고 있는 특징이 있다. 표적 후보를 검출하기 위해 대상 물체의 레이더 후방산란 특성을 이용한 Constant False Alarm Rate (CFAR) 알고리즘을 적용하였다. 검출된 표적 후보군으로부터 비표적을 제거하기 위해 표적의 크기 정보를 이용한 화소 클러스터링, 표적군을 이루는 표적들간의 배치 특성을 이용한 네트워크 클러스터링. 그리고 SAR 간섭기법 적용이 가능한 간섭쌍이 있는 경우 긴밀도 정보를 이용하였다. 또한, 오경보(False Alarm)를 감소시키고 최종 표적을 결정하기 위해, 표적의 형태 정보를 추출할 수 있는 Electro-Optical (EO) 영상을 바탕으로 효과적인 타원 검출 기법을 개발하였다. 개발된 표적군 검출 알고리즘을 10개 지역에 적용한 결과, 표적군 검출율은 100%, 단일 표적에 대한 오경보율은 0.03~0.3개/$km^2$, 평균 오경보는 1.8군/$64km^2$로 낮은 오경보와 높은 검출율을 보이며 표적군이 검출되었다. 본 연구에서 개발된 표준화된 표적 검출 기법은 향후 무인화된 표적 검출 시스템 구축에 핵심적인 기술이 될 것으로 전망한다.
대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
/
pp.516-519
/
2006
Military targets in SAR images are not distinguished easily unlike those in optical images, because targets are only dozens of pixels and they have many corner reflectors sensitive to the incidence angle of radar signals. Due to those problems, SAR image analysts have difficulties in recognizing military targets captured by SAR images. Furthermore, manual analysis cannot respond promptly enough to rapidly changing situations such as battle field. We need automated analysis to solve these problems. In this paper, we analyzed algorithms for prescreening of military targets in SAR images. We implemented some prescreening algorithms and tested the algorithms using SAR data. As a result, we will report performance of the tested prescreening algorithms.
Different from the field of electro-optical(EO) image analysis, there has been less interest in similarity metrics between synthetic aperture radar(SAR) target images. A reliable and objective similarity analysis for SAR target images is expected to enable the verification of the SAR measurement process or provide the guidelines of target CAD modeling that can be used for simulating realistic SAR target images. For this purpose, this paper presents a similarity analysis method based on the siamese network that quantifies the subjective assessment through the distance learning of similar and dissimilar SAR target image pairs. The proposed method is applied to MSTAR SAR target images of slightly different depression angles and the resultant metrics are compared and analyzed with qualitative evaluation. Since the image similarity is somewhat related to recognition performance, the capacity of the proposed method for target recognition is further checked experimentally with the confusion matrix.
대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
/
pp.776-779
/
2006
KOMPSAT-5 that will be launched at the end of 2008 has a SAR (Synthetic Aperture Radar) payload. Since the Calibration and Validation of a satellite SAR is different from a passive optical camera as KOMPSAT-2 MSC and KOMPSAT-3 payload, we have started from the basis of SAR system. Firstly, the general SAR Cal/Val parameters have been gathered and defined. Secondly, we have been choosing the Cal/Val parameters suitable to KOMPSAT-5. Thirdly, the methods of SAR Cal/Val with the parameters have been studied. Fourthly, the requirement of Cal/Val devices and Cal/Val site has been studied.
범용센서모델의 한 종류인 비례다항식 모델(RFM: Rational Function Model)은 광학영상의 센서모델링분야에서 활발히 활용되고 있으나 SAR영상에 대한 적용은 미진한 실정이다. 본 연구에서는 스테레오 TerraSAR-X영상을 대상으로 RF 모델링을 적용하여 적용방법의 타당성과 효율성에 대해 분석하였다. 또한 본 연구성과의 DSM(Digital Surface Model)과 기존 상용 소프트웨어에서 생성된 DSM을 다양한 측면에서 비교 분석하였다. 그 결과 RF 모델링 기법이 SAR영상의 적용 시에도 매우 효과적이며 실용적으로 적용 가능함을 알 수 있었다.
With the increasing severity of climate change, intense torrential rains are occurring more frequently globally. Flooding due to torrential rain not only causes substantial damage directly, but also via secondary events such as landslides. Therefore, accurate and prompt flood detection is required. Because it is difficult to directly access flooded areas, previous studies have largely used satellite images. Traditionally, water indices such asthe normalized difference water index (NDWI) and modified normalized difference water index (MNDWI) which are based on different optical bands acquired by satellites, are used to detect floods. In addition, as flooding likelihood is greatly influenced by the weather, synthetic aperture radar (SAR) images have also been used, because these are less influenced by weather conditions. In this study, we compared flood areas calculated from SAR images and water indices derived from Landsat-8 images, where the images were acquired at similar times. The flooded area was calculated from Landsat-8 and Sentinel-1 images taken between the end of May and August 2019 at Lijiazhou Island, China, which is located in the Changjiang (Yangtze) River basin and experiences annual floods. As a result, the flooded area calculated using the MNDWI was approximately 21% larger on average than that calculated using the NDWI. In a comparison of flood areas calculated using water indices and SAR intensity images, the flood areas calculated using SAR images tended to be smaller, regardless of the order in which the images were acquired. Because the images were acquired by the two satellites on different dates, we could not directly compare the accuracy of the water-index and SAR data. Nevertheless, this study demonstrates that floods can be detected using both optical and SAR satellite data.
합성 개구면 레이다(synthetic aperture radar: SAR) 위성은 주 야와 날씨에 관계없이 객체의 전자기적 산란분포를 2차원 영상으로 제공할 수 있기 때문에, 광학 위성에 비해 객체 분석에 효과적으로 이용될 수 있다. SAR 위성의 지구 관측주기를 고려한다면, 한 번에 넓은 범위를 관측하는 것이 객체분석에 유리하다. 하지만, 관측범위가 넓어질수록 위성 SAR 영상의 해상도가 저하되는 문제점이 있다. 이는 기존 레이다 신호처리에 이용되었던 해상도 향상 기법을 이용하여 극복될 수 있지만, 아직 해상도 향상 기법을 위성 SAR 영상에 적용하여 그 성능을 분석한 연구는 미미한 실정이다. 따라서 본 논문에서는 위성 SAR 영상에 대한 기존 해상도 기법의 적용 가능성을 탐색하는 연구를 수행한다. 구체적으로, 한국항공우주연구원에서 운용 중인 다목적실용위성 5호(Korea multi-purpose satellite-5: KOMPSAT-5) 영상에 객체 탐지를 수행하고, 외삽(extrapolation), RELAX(relaxation), MUSIC(multiple signal classification) 기법을 적용하여 해상도를 향상시킨 후, 그 성능을 분석한다.
This study a imed to analyze the effect of combined optical and radar image for the land cover classification in coastal region. The study area, Gyeonggi Bay area has one of the largest tidal ranges and has frequent land cover changes due to the several reclamations and rather intensive land uses. Ten land cover types were classified using several datasets of combining Landsat ETM+ and RADARSAT imagery. The synergic effects of the merged datasets were analyzed by both visual interpretation and an ordinary supervised classification. The merged optical and SAR datasets provided better discrimination among the land cover classes in the coastal area. The overall classification accuracy of merged datasets was improved to 86.5% as compared to 78% accuracy of using ETM+ only.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.