• Title/Summary/Keyword: opportunistic transmission

Search Result 95, Processing Time 0.02 seconds

Achievable Rate Analysis for Opportunistic Non-orthogonal Multiple Access-Based Cooperative Relaying Systems

  • Lee, In-Ho;Lee, Howon
    • Journal of Information Processing Systems
    • /
    • v.13 no.3
    • /
    • pp.630-642
    • /
    • 2017
  • In this paper, we propose the opportunistic non-orthogonal multiple access (NOMA)-based cooperative relaying system (CRS) with channel state information (CSI) available at the source, where CSI for the source-to-destination and source-to-relay links is used for opportunistic transmission. Using the CSI, for opportunistic transmission, the source instantaneously chooses between the direct transmission and the cooperative NOMA transmission. We provide an asymptotic expression for the average achievable rate of the opportunistic NOMA-based CRS under Rayleigh fading channels. We verify the asymptotic analysis through Monte Carlo simulations, and compare the average achievable rates of the opportunistic NOMA-based CRS and the conventional one for various channel powers and power allocation coefficients used for NOMA.

Performance Comparisons of Cooperative Multi-relay System with/without Opportunistic Transmission in Rayleigh Fading Channel (Rayleigh 페이딩 채널에서 기회전송 유무에 따른 협동 다중 릴레이 시스템의 성능비교)

  • Kim, Nam-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.4
    • /
    • pp.25-33
    • /
    • 2008
  • The performance of power constrained cooperative multi-relay system with/without opportunistic transmission is considered in Rayleigh fading. The three power allocation methods are considered to maximize the system performance when the total network power is limited. It is analyzed that the opportunistic power allocation strategy has the best performance enhancement compared to the other power allocation strategies. The opportunistic relays increases with the total network power, which induce the higher diversity order of the opportunistic cooperative diversity, consequently improves the end-to-end outage probability.

  • PDF

Opportunistic Scheduling and Power Control for Cross-Layer Design of Ad Hoc Networks (Ad Hoc네트워크의 Cross-Layer설계를 위한 Opportunistic Scheduling과 Power Control기법)

  • Casaquite Reizel;Ham Byung-Woon;Hwang Won-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9A
    • /
    • pp.856-867
    • /
    • 2006
  • This paper proposes a new algorithm for opportunistic scheduling that take advantage of both multiuser diversity and power control. Motivated by the multicast RTS and priority-based CTS mechanism of OSMA protocol, we propose an opportunistic packet scheduling with power control scheme based on IEEE 802.11 MAC protocol. The scheduling scheme chooses the best candidate receiver for transmission by considering the SINR at the nodes. This mechanism ensures that the transmission would be successful. The power control algorithm on the other hand, helps reduce interference between links and could maximize spatial reuse of the bandwidth. We then formulate a convex optimization problem for minimizing power consumption and maximizing net utility of the system. We showed that if a transmission power vector satisfying the maximum transmission power and SINR constraints of all nodes exist, then there exists an optimal solution that minimizes overall transmission power and maximizes utility of the system.

Applying a sensor energy supply communication scheme to big data opportunistic networks

  • CHEN, Zhigang;WU, Jia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2029-2046
    • /
    • 2016
  • Energy consumption is an important index in mobile ad hoc networks. Data packet transmission increases among nodes, particularly in big data communication. However, nodes may be unable to transmit data packets because of energy over-consumption. Consequently, information may be lost and network communication may block. While opportunistic network is a kind of mobile ad hoc networks, researchers do not focus on energy consumption in opportunistic network communication. This study proposed an effective sensor energy supply scheme that can be applied in opportunistic networks. This scheme considers nodes sensor requests and communication model. In this scheme, nodes do not only accomplish energy supply in communication, but also extend communication time in opportunistic networks. Compared with the Spray and Wait algorithm and the Binary Spray and Wait algorithm in simulations, the proposed scheme extends communication time, increases data packet transmission, and accomplishes energy supply among nodes.

FARS: A Fairness-aware Routing Strategy for Mobile Opportunistic Networks

  • Ma, Huahong;Wu, Honghai;Zheng, Guoqiang;Ji, Baofeng;Li, Jishun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.5
    • /
    • pp.1992-2008
    • /
    • 2018
  • Mobile opportunistic network is a kind of ad hoc networks, which implements the multi-hop routing communication with the help of contact opportunity brought about by the mobility of the nodes. It always uses opportunistic data transmission mode based on store-carry-forward to solve intermittent connect problem of link. Although many routing schemes have been proposed, most of them adopt the greedy transmission mode to pursue a higher delivery efficient, which result in unfairness extremely among nodes. While, this issue has not been paid enough attention up to now. In this paper, we analyzed the main factors that reflect fairness among nodes, modeled routing selection as a multiple attribute decision making problem, and proposed our Fairness-aware Routing Strategy, named FARS. To evaluate the performance of our FARS, extensive simulations and analysis have been done based on a real-life dataset and a synthetic dataset, respectively. The results show that, compared with other existing protocols, our FARS can greatly improve the fairness of the nodes when ensuring the overall delivery performance of the network.

Opportunistic Routing for Bandwidth-Sensitive Traffic in Wireless Networks with Lossy Links

  • Zhao, Peng;Yang, Xinyu
    • Journal of Communications and Networks
    • /
    • v.18 no.5
    • /
    • pp.806-817
    • /
    • 2016
  • Opportunistic routing (OR) has been proposed as a viable approach to improve the performance of wireless multihop networks with lossy links. However, the exponential growth of the bandwidth-sensitive mobile traffic (e.g., mobile video streaming and online gaming) poses a great challenge to the performance of OR in term of bandwidth guarantee. To solve this problem, a novel mechanism is proposed to opportunistically forwarding data packets and provide bandwidth guarantee for the bandwidth-sensitive traffic. The proposal exploits the broadcast characteristic of wireless transmission and reduces the negative effect of wireless lossy links. First, the expected available bandwidth (EAB) and the expected transmission cost (ETC) under OR are estimated based on the local available bandwidth, link delivery probability, forwarding candidates, and prioritization policy. Then, the policies for determining and prioritizing the forwarding candidates is devised by considering the bandwidth and transmission cost. Finally, bandwidth-aware routing algorithm is proposed to opportunistically delivery data packets; meanwhile, admission control is applied to admit or reject traffic flows for bandwidth guarantee. Extensive simulation results show that our proposal consistently outperforms other existing opportunistic routing schemes in providing performance guarantee.

A Random Access based on Pilot-Assisted Opportunistic Transmission for Cellular IoT Networks (셀룰라 IoT 네트워크를 위한 파일럿 지원 기회적 전송 기반 임의 접속 기법)

  • Kim, Taehoon;Chae, Seong Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.10
    • /
    • pp.1254-1260
    • /
    • 2019
  • Recently, 5G cellular systems have been attracted great attention as a key enabler for Industry 4.0. In this paper, we propose a novel random access based on pilot-assisted opportunistic transmission to support internet-of-things (IoT) scenario in cellular networks. A key feature of our proposed scheme is to enable each of IoT devices to attempt opportunistic transmission of its data packet in Step 3 with randomly selected uplink pilot signal. Both the opportunistic transmission and the pilot randomization in Step 3 are effective to significantly mitigate the occurrence of packet collisions. We mathematically analyze our proposed scheme in terms of packet collision probability and uplink resource efficiency. Through simulations, we verify the validity of our analysis and evaluate the performance of our proposed scheme. Numerical results show that our proposed scheme outperforms other competitive schemes.

Multipath Routing Based on Opportunistic Routing for Improving End-to-end Reliability in Large-scale Wireless Sensor Networks (대규모 무선 센서 네트워크에서 종단 간 전송 성공률 향상을 위한 기회적 라우팅 기반 다중 경로 전송 방안)

  • Kim, SangDae;Kim, KyongHoon;Kim, Ki-Il
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.4
    • /
    • pp.177-186
    • /
    • 2019
  • In wireless sensor networks, the transmission success ratio would be decreased when the scale of the WSNs increased. To defeat this problem, we propose a multipath routing based on opportunistic routing for improving end-to-end reliability in large-scale wireless sensor networks. The proposed scheme exploits the advantages of existing opportunistic routing and achieves high end-to-end success ratio by branching like a multipath routing through local decision without information of the whole network. As a result of the simulation result, the proposed scheme shows a similar or higher end-to-end transmission success ratio and less energy consumption rather than the existing scheme.

Optimal Power Allocation of Opportunistic Transmission Relay Systems in Rayleigh Fading Channel (레일레이 페이딩 채널에서 기회전송 릴레이 시스템의 최적 전력 할당)

  • Kim, Nam-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.6
    • /
    • pp.1-8
    • /
    • 2009
  • Though the wireless ad-hoc network which is recently highly focused is power limited network, one of the main research topic is power saving. We propose a optimal power allocation strategy and derive the optimal power of the opportunistic transmission relays for minimum outage probability of the power limited network. It is shown that the proposed optimal power allocation has always better performance than that of the equal power allocation.

  • PDF

Channel Statistical MAC Protocol for Cognitive Radio

  • Xiang, Gao;Zhu, Wenmin;Park, Hyung-Kun
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.1
    • /
    • pp.40-44
    • /
    • 2010
  • opportunistic spectrum access (OSA) allows unlicensed users to share licensed spectrum in space and time with no or little interference to primary users, with bring new research challenges in MAC design. We propose a cognitive MAC protocol using statistical channel information and selecting appropriate idle channel for transmission. The protocol based on the CSMA/CA, exploits statistics of spectrum usage for decision making on channel access. Idle channel availability, spectrum hole sufficiency and available channel condition will be included in algorithm statistical information. The model include the control channel and data channel, the transmitter negotiates with receiver on transmission parameters through control channel, statistical decision results (successful rate of transmission) from exchanged transmission parameters of control channel should pass the threshold and decide the data transmission with spectrum hole on data channel. A dynamical sensing range as a important parameter introduced to maintain the our protocol performance. The proposed protocol's simulation will show that proposed protocol does improve the throughput performance via traditional opportunistic spectrum access MAC protocol.