• Title/Summary/Keyword: opportunistic spectrum sharing

Search Result 11, Processing Time 0.02 seconds

PERFORMANCE OF MYOPIC POLICY FOR OPPORTUNISTIC SPECTRUM SHARING

  • Lee, Yu-Tae
    • East Asian mathematical journal
    • /
    • v.27 no.1
    • /
    • pp.23-33
    • /
    • 2011
  • Due to underutilization of spectrum under current inefficient and static spectrum management policy, various kinds of opportunistic spectrum access (OSA) strategies have appeared. Myopic policy is a simple and robust OSA strategy with reduced complexity that maximizes immediate throughput. In this paper, we propose mathematical models to evaluate the throughput and the MAC delay of a myopic policy under saturation tra c conditions. Using the MAC delay distribution, we evaluate the packet delay of secondary users under nonsaturation conditions. Numerical results are given to show the performance of the myopic policy in cognitive radio networks.

A Dynamic QoS Model for improving the throughput of Wideband Spectrum Sharing in Cognitive Radio Networks

  • Manivannan, K.;Ravichandran, C.G.;Durai, B. Sakthi Karthi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.3731-3750
    • /
    • 2014
  • This paper considers a wideband cognitive radio network (WCRN) which can simultaneously sense multiple narrowband channels and thus aggregate the detected available channels for transmission and studies the ergodic throughput of the WCRN that operated under: the wideband sensing-based spectrum sharing (WSSS) scheme and the wideband opportunistic spectrum access (WOSA) scheme. In our analysis, besides the average interference power constraint at PU, the average transmit power constraint of SU is also considered for the two schemes and a novel cognitive radio sensing frame that allows data transmission and spectrum sensing at the same time is utilized, and then the maximization throughput problem is solved by developing a gradient projection method. Finally, numerical simulations are presented to verify the performance of the two proposed schemes.

Cognitive Radio Based Spectrum Sharing: Evaluating Channel Availability via Traffic Pattern Prediction

  • Li, Xiukui;Zekavat, Seyed A. (Reza)
    • Journal of Communications and Networks
    • /
    • v.11 no.2
    • /
    • pp.104-114
    • /
    • 2009
  • In this paper, a technique is proposed that enables secondary users to evaluate channel availability in cognitive radio networks. Here, secondary users estimate the utilization of channels via predicting the traffic pattern of primary user, and select a proper channel for radio transmission. The proposed technique reduces the channel switching rate of secondary users (the rate of switching from one channel to another) and the interference on primary users, while maintaining a reasonable call blocking rate of secondary users.

Channel Selection for Spectrum Sharing in Wireless Networks

  • Park, Jae Cheol;Kang, Kyu-Min;Park, Seungkeun
    • ETRI Journal
    • /
    • v.38 no.5
    • /
    • pp.952-961
    • /
    • 2016
  • In this paper, we study a spectrum sharing network (SSN) where a spectrum sharing device (SSD) coexists with multiple wireless communication systems (WCSs) in the same channel. The SSD can operate with either a duty cycle (DC) channel access mechanism or a listen-before-talk (LBT) channel access mechanism, whereas WCSs operate with an LBT mechanism. An opportunistic channel selection scheme for the SSD in the SSN is first proposed to minimize the outage probability. The optimal data transmission time for the DC-based SSD is derived to further improve the outage probability. We also derive the exact and closed-form outage probability of the proposed channel selection in the SSN by assuming that the number of WCSs operating in each channel is uniformly distributed. The simulation results show that the proposed channel selection scheme outperforms other channel selection schemes. It was also observed that a DC-based SSD with an optimal data transmission time provides a better outage performance than an LBT-based SSD. As the number of available channels increases, the channel selection scheme plays an important role in minimizing the outage probability of the SSNs.

Power Saving and Improving the Throughput of Spectrum Sharing in Wideband Cognitive Radio Networks

  • Li, Shiyin;Xiao, Shuyan;Zhang, Maomao;Zhang, Xiaoguang
    • Journal of Communications and Networks
    • /
    • v.17 no.4
    • /
    • pp.394-405
    • /
    • 2015
  • This paper considers a wideband cognitive radio network which can simultaneously sense multiple narrowband channels and thus aggregate the detected available channels for transmission and proposes a novel cognitive radio system that exhibits improved sensing throughput and can save power consumption of secondary user (SU) compared to the conventional cognitive radio system studied so far. More specifically, under the proposed cognitive radio system, we study the problem of designing the optimal sensing time and power allocation strategy, in order to maximize the ergodic throughput of the proposed cognitive radio system under two different schemes, namely the wideband sensing-based spectrum sharing scheme and the wideband opportunistic spectrum access scheme. In our analysis, besides the average interference power constraint at primary user, the average transmit power constraint of SU is also considered for the two schemes and then a subgradient algorithm is developed to obtain the optimal sensing time and the corresponding power allocation strategy. Finally, numerical simulations are presented to verify the performance of the two proposed schemes.

Hybrid Spectrum Sharing with Cooperative Secondary User Selection in Cognitive Radio Networks

  • Kader, Md. Fazlul;Asaduzzaman, Asaduzzaman;Hoque, Md. Moshiul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.9
    • /
    • pp.2081-2100
    • /
    • 2013
  • In this paper, we propose a cooperative hybrid spectrum sharing protocol by jointly considering interweave (opportunistic) and underlay schemes. In the proposed protocol, secondary users can access the licensed spectrum along with the primary system. Our network scenario comprises a single primary transmitter-receiver (PTx-PRx) pair and a group of M secondary transmitter-receiver (STx-SRx) pairs within the transmission range of the primary system. Secondary transmitters are divided into two groups: active and inactive. A secondary transmitter that gets an opportunity to access the secondary spectrum is called "active". One of the idle or inactive secondary transmitters that achieves the primary request target rate $R_{PT}$ will be selected as a best decode-and-forward (DF) relay (Re) to forward the primary information when the data rate of the direct link between PTx and PRx falls below $R_{PT}$. We investigate the ergodic capacity and outage probability of the primary system with cooperative relaying and outage probability of the secondary system. Our theoretical and simulation results show that both the primary and secondary systems are able to achieve performance improvement in terms of outage probability. It is also shown that ergodic capacity and outage probability improve when the active secondary transmitter is located farther away from the PRx.

User Selection Scheme for the Performance Improvement of the Secondary System in Cognitive Radio Systems using Underlay Mode (후 순위 시스템의 성능 향상을 위한 언더레이 기반의 인지 무선 시스템의 사용자 선택 기법)

  • Choe, Romi;Byun, Youn-Shik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.3
    • /
    • pp.249-257
    • /
    • 2013
  • Recently, data traffic is significantly increased by high rate data service. As a result, radio spectrum is considered one of the most scarce and valuable resources for wireless communications. For the solution of this problem, cognitive radio(CR) has been proposed as an efficient means to opportunistic spectrum sharing between primary (licensed) users and cognitive radio users. In this paper, user selection scheme in CR networks is proposed for additional consideration of secondary system. The proposed user selection scheme mitigates interference to primary user by using orthogonal channel vectors while improves performance of secondary system. Simulation results show that the proposed scheme achieves 1.62bps/Hz higher average throughput of whole system than one of the existing scheme.

Implementation and Measurement of Spectrum Sensing for Cognitive Radio Networks Based on LoRa and GNU Radio

  • Tendeng, Rene;Lee, YoungDoo;Koo, Insoo
    • International journal of advanced smart convergence
    • /
    • v.7 no.3
    • /
    • pp.23-36
    • /
    • 2018
  • In wireless communication, efficient spectrum usage is an issue that has been an attractive research area for many technologies. Recently new technologies innovations allow compact radios to transmit with power efficient communication over very long distances. For example, Low-Power Wide Area Networks (LPWANs) are an attractive emerging platform to connect the Internet-of-Things (IoT). Especially, LoRa is one of LPWAN technologies and considered as an infrastructure solution for IoT. End-devices use LoRa protocol across a single wireless hop to communicate to gateway(s) connected to the internet which acts as a bridge and relays message between these LoRa end-devices to a central network server. The use of the (ISM) spectrum sharing for such long-range networking motivates us to implement spectrum sensing testbed for cognitive radio network based on LoRa and GNU radio. In cognitive radio (CR), secondary users (SUs) are able to sense and use this information to opportunistically access the licensed spectrum band in absence of the primary users (PUs). In general, PUs have not been very receptive of the idea of opportunistic spectrum sharing. That is, CR will harmfully interfere with operations of PUs. Subsequently, there is a need for experimenting with different techniques in a real system. In this paper, we implemented spectrum sensing for cognitive radio networks based on LoRa and GNU Radio, and further analyzed corresponding performances of the implemented systems. The implementation is done using Microchip LoRa evolution kits, USRPs, and GNU radio.

A Multi-hop Relaying Transmission Scheme in Cognitive Radio System (Cognitive Radio 시스템 환경에서의 다중 홉 릴레이 전송 기법)

  • Lee, Dong-Kyu;Shin, Jung-Chae;Lim, Eun-Taek;Lee, Hyun-Woo;Cho, Ho-Shin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9A
    • /
    • pp.853-866
    • /
    • 2008
  • In this paper, a multi-hop relaying transmission scheme is analyzed regarding its feasibility and potentiality in the IEEE 802.22-based cognitive radio (CR) environment. Shortly, basic design issues are addressed such as relay station (RS) deployment and a frame structure of physical channel to escape inter-hop interference. This paper mainly develops a radio resource management scheme based on spectrum sensing results aggregated from CR secondary nodes and improves the opportunistic spectrum sharing efficiency. In particular, a decision rule about a channel availability is made using a distributed sensing method. Subsequently, spectrum allocation and routing path decision procedures are proposed to establish a link from source to destination with a hop-by-hop manner. Simulation results show that the proposed multi-hop relaying scheme is substantially profitable in CR environments if the number of hops and RS deployment are designed in such a way that the spectrum sharing gain is larger than spectrum division loss which is inherently induced in multi-hop relaying systems.

Cooperative spectrum leasing using parallel communication of secondary users

  • Xie, Ping;Li, Lihua;Zhu, Junlong;Jin, Jin;Liu, Yijing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.8
    • /
    • pp.1770-1785
    • /
    • 2013
  • In this paper, a multi-hop transmission protocol based on parallel communication of secondary users (SUs) is proposed. The primary multi-hop network coexists with a set of SUs by cooperative spectrum sharing. The main optimization target of our protocol is the overall performance of the secondary system with the guarantee of the primary outage performance. The energy consumption of the primary system is reduced by the cooperation of SUs. The aim of the primary source is to communicate with the primary destination via a number of primary relays. SUs may serve as extra decode-and-forward relays for the primary network. When an SU acts as a relay for a primary user (PU), some other SUs that satisfy the condition for parallel communication are selected to simultaneously access the primary spectrum for secondary transmissions. For the proposed protocol, two opportunistic routing strategies are proposed, and a search algorithm to select the SUs for parallel communication is described. The throughput of the SUs and the PU is illustrated. Numerical results demonstrate that the average throughput of the SUs is greatly improved, and the end-to-end throughput of the PU is slightly increased in the proposed protocol when there are more than seven SUs.