• Title/Summary/Keyword: opportunistic communications

Search Result 83, Processing Time 0.027 seconds

Cellular Traffic Offloading through Opportunistic Communications Based on Human Mobility

  • Li, Zhigang;Shi, Yan;Chen, Shanzhi;Zhao, Jingwen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.872-885
    • /
    • 2015
  • The rapid increase of smart mobile devices and mobile applications has led to explosive growth of data traffic in cellular network. Offloading data traffic becomes one of the most urgent technical problems. Recent work has proposed to exploit opportunistic communications to offload cellular traffic for mobile data dissemination services, especially for accepting large delayed data. The basic idea is to deliver the data to only part of subscribers (called target-nodes) via the cellular network, and allow target-nodes to disseminate the data through opportunistic communications. Human mobility shows temporal and spatial characteristics and predictability, which can be used as effective guidance efficient opportunistic communication. Therefore, based on the regularity of human mobility we propose NodeRank algorithm which uses the encounter characteristics between nodes to choose target nodes. Different from the existing work which only using encounter frequency, NodeRank algorithm combined the contact time and inter-contact time meanwhile to ensure integrity and availability of message delivery. The simulation results based on real-world mobility traces show the performance advantages of NodeRank in offloading efficiency and network redundant copies.

Opportunistic Scheduling and Power Control for Cross-Layer Design of Ad Hoc Networks (Ad Hoc네트워크의 Cross-Layer설계를 위한 Opportunistic Scheduling과 Power Control기법)

  • Casaquite Reizel;Ham Byung-Woon;Hwang Won-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9A
    • /
    • pp.856-867
    • /
    • 2006
  • This paper proposes a new algorithm for opportunistic scheduling that take advantage of both multiuser diversity and power control. Motivated by the multicast RTS and priority-based CTS mechanism of OSMA protocol, we propose an opportunistic packet scheduling with power control scheme based on IEEE 802.11 MAC protocol. The scheduling scheme chooses the best candidate receiver for transmission by considering the SINR at the nodes. This mechanism ensures that the transmission would be successful. The power control algorithm on the other hand, helps reduce interference between links and could maximize spatial reuse of the bandwidth. We then formulate a convex optimization problem for minimizing power consumption and maximizing net utility of the system. We showed that if a transmission power vector satisfying the maximum transmission power and SINR constraints of all nodes exist, then there exists an optimal solution that minimizes overall transmission power and maximizes utility of the system.

Two-Dimensional POMDP-Based Opportunistic Spectrum Access in Time-Varying Environment with Fading Channels

  • Wang, Yumeng;Xu, Yuhua;Shen, Liang;Xu, Chenglong;Cheng, Yunpeng
    • Journal of Communications and Networks
    • /
    • v.16 no.2
    • /
    • pp.217-226
    • /
    • 2014
  • In this research, we study the problem of opportunistic spectrum access (OSA) in a time-varying environment with fading channels, where the channel state is characterized by both channel quality and the occupancy of primary users (PUs). First, a finite-state Markov channel model is introduced to represent a fading channel. Second, by probing channel quality and exploring the activities of PUs jointly, a two-dimensional partially observable Markov decision process framework is proposed for OSA. In addition, a greedy strategy is designed, where a secondary user selects a channel that has the best-expected data transmission rate to maximize the instantaneous reward in the current slot. Compared with the optimal strategy that considers future reward, the greedy strategy brings low complexity and relatively ideal performance. Meanwhile, the spectrum sensing error that causes the collision between a PU and a secondary user (SU) is also discussed. Furthermore, we analyze the multiuser situation in which the proposed single-user strategy is adopted by every SU compared with the previous one. By observing the simulation results, the proposed strategy attains a larger throughput than the previous works under various parameter configurations.

Optimal Opportunistic Spectrum Access with Unknown and Heterogeneous Channel Dynamics in Cognitive Radio Networks

  • Zhang, Yuli;Xu, Yuhua;Wu, Qihui;Anpalagan, Alagan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.8
    • /
    • pp.2675-2690
    • /
    • 2014
  • We study the problem of optimal opportunistic spectrum access with unknown and heterogeneous channel dynamics in cognitive radio networks. There is neither statistic information about the licensed channels nor information exchange among secondary users in the respective systems. We formulate the problem of maximizing network throughput. To achieve the desired optimization, we propose a win-shift lose-stay algorithm based only on rewards. The key point of the algorithm is to make secondary users tend to shift to another channel after receiving rewards from the current channel. The optimality and the convergence of the proposed algorithm are proved. The simulation results show that for both heterogeneous and homogenous systems the proposed win-shift lose-stay algorithm has better performance in terms of throughput and fairness than an existing algorithm.

Ad-Hoc Behavior in Opportunistic Radio

  • Mumtaz, Shahid;Marques, Paulo;Gameiro, Atilio;Rodriguez, Jonathan
    • Journal of Communications and Networks
    • /
    • v.11 no.2
    • /
    • pp.187-195
    • /
    • 2009
  • The application of mathematical analysis to the study of wireless ad hoc networks has met with limited success due to the complexity of mobility, traffic models and the dynamic topology. A scenario based universal mobile telecommunications system (UMTS) time division duplex (TDD) opportunistic cellular system with an ad hoc behaviour that operates over UMTS frequency division duplex (FDD) licensed cellular network is considered. In this paper, we present a new routing metric which overall improves system performance in terms of interference and routing which operate in an ad hoc network in an opportunistic manner. Therefore we develop a simulation tool that addresses the goal of analysis and assessment of UMTS TDD opportunistic radio system with ad hoc behavior in coexistence with a UMTS FDD primary cellular networks.

Density-Based Opportunistic Broadcasting Protocol for Emergency Situations in V2X Networks

  • Park, Hyunhee;Singh, Kamal Deep;Piamrat, Kandaraj
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.1
    • /
    • pp.26-32
    • /
    • 2014
  • Vehicular-to-anything (V2X) technology is attractive for wireless vehicular ad-hoc networks (VANETs) because it allows for opportunistic choice of a vehicular protocol between vehicular-to-vehicular (V2V) and vehicular-to-infrastructure (V2I) communications. In particular, achieving seamless connectivity in a VANET with nearby network infrastructure is challenging. In this paper, we propose a density-based opportunistic broadcasting (DOB) protocol, in which opportunistic connectivity is carried out by using the nearby infrastructure and opposite vehicles for solving the problems of disconnection and long end-to-end delay times. The performance evaluation results indicate that the proposed DOB protocol outperforms the considered comparative conventional schemes, i.e., the shortest path protocol and standard mobile WiMAX, in terms of the average end-to-end delay, packet delivery ratio, handover latency, and number of lost packets.

OPEED: Optimal Energy-Efficient Neighbor Discovery Scheme in Opportunistic Networks

  • Yang, Dongmin;Shin, Jongmin;Kim, Jeongkyu;Kim, Geun-Hyung
    • Journal of Communications and Networks
    • /
    • v.17 no.1
    • /
    • pp.34-39
    • /
    • 2015
  • In opportunistic networks, it is difficult to predict when a node encounters others and how long it keeps in contact with another. Nodes continually attempt to explore neighbor nodes in the vicinity to transmit data. In battery-operated devices, this persistent exploration consumes a great deal of energy. In this paper, we propose an optimal energy-efficient neighbor discovery scheme (OPEED) that guarantees neighbor discovery within a delay bound. Through performance evaluation, we show that the OPEED scheme consumes 33%-83% less energy than other schemes.

Opportunistic Interference Management for Interfering Multiple-Access Channels (간섭 다중 접속 채널에서의 기회적 간섭 관리 기술)

  • Shin, Won-Yong;Park, Dohyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.10
    • /
    • pp.929-937
    • /
    • 2012
  • In this paper, we introduce three types of opportunistic interference management strategies in multi-cell uplink networks with time-invariant channel coefficients. First, we propose two types of opportunistic interference mitigation techniques, where each base station (BS) opportunistically selects a set of users who generate the minimum interference to the other BSs, and then their performance is analyzed in terms of degrees-of-freedom (DoF). Second, we propose a distributed opportunistic scheduling, where each BS opportunistically select a user using a scheduler designed based on two threshold, and then its performance is analyzed in terms of throughput scaling law. Finally, numerical evaluation is performed to verify our result.

Power Allocation Schemes For Downlink Cognitive Radio Networks With Opportunistic Sub-channel Access

  • Xu, Ding;Feng, Zhiyong;Zhang, Ping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.7
    • /
    • pp.1777-1791
    • /
    • 2012
  • This paper considers a downlink cognitive radio (CR) network where one secondary user (SU) and one primary user (PU) share the same base station (BS). The spectrum of interest is divided into a set of independent, orthogonal subchannels. The communication of the PU is of high priority and the quality of service (QoS) is guaranteed by the minimum rate constraint. On the other hand, the communication of the SU is of low priority and the SU opportunistically accesses the subchannels that were previously discarded by the PU during power allocation. The BS assigns fractions ?? and 1 ?? of the total available transmit power to the PU and the SU respectively. Two power allocation schemes with opportunistic subchannel access are proposed, in which the optimal values of ??'s are also obtained. The objective of one scheme is to maximize the rate of the SU, and the objective of the other scheme is to maximize the sum rate of the SU and the PU, both under the PU minimum rate constraint and the total transmit power constraint. Extensive simulation results are obtained to verify the effectiveness of the proposed schemes.