• Title/Summary/Keyword: opportunistic access

Search Result 70, Processing Time 0.026 seconds

Proportional-fair relaying for a wireless cooperative network (무선 협력 네트워크를 위한 비례공정 중계 기법)

  • Kim, Jinsu;Lee, Jae Hong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.121-122
    • /
    • 2011
  • 본 논문에서는 무선 협력 네트워크(wireless cooperative network)의 전송 신뢰성과 공정성 향상을 위한 비례공정 중계(proportional-fair relaying) 기법을 제안한다. 다중 단말과 단일 기지국이 있는 다원 접속(multiple access) 환경에서 저속 페이딩(slow fading)에 의한 성능 열화를 저감하면서 단말간 자원 사용 공정성 보장하기 위해 비례공정 전송 기법과 중계 기법 결합한다. 이를 통해 기존 기회적(opportunistic) 전송 기법의 비대칭 채널(asymmetric channel)에서의 자원 사용 불공정성을 해결하면서 깊은 페이딩(deep fading)에 의한 데이터 무선 전송 손실을 최소화 한다. 컴퓨터 모의실험 결과를 통해 제안된 기법이 공정성 제한(fairness constraint)이 있는 다원 접속 환경에서 불능 확률(outage probability) 성능을 제고함을 보인다.

  • PDF

Channel Prediction-Based Channel Allocation Scheme for Multichannel Cognitive Radio Networks

  • Lee, Juhyeon;Park, Hyung-Kun
    • Journal of Communications and Networks
    • /
    • v.16 no.2
    • /
    • pp.209-216
    • /
    • 2014
  • Cognitive radio (CR) has been proposed to solve the spectrum utilization problem by dynamically exploiting the unused spectrum. In CR networks, a spectrum selection scheme is an important process to efficiently exploit the spectrum holes, and an efficient channel allocation scheme must be designed to minimize interference to the primary network as well as to achieve better spectrum utilization. In this paper, we propose a multichannel selection algorithm that uses spectrum hole prediction to limit the interference to the primary network and to exploit channel characteristics in order to enhance channel utilization. The proposed scheme considers both the interference length and the channel capacity to limit the interference to primary users and to enhance system performance. By using the proposed scheme, channel utilization is improved whereas the system limits the collision rate of the CR packets.

Orthogonal Signaling-based Sensing Data Reporting for Cooperative Spectrum Sensing in Cognitive Radio

  • Ko, Jae-Hoon;Kwon, Soon-Mok;Kim, Chee-Ha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3A
    • /
    • pp.287-295
    • /
    • 2011
  • Cognitive radio (CR) features opportunistic access to spectrum when licensed users (LU) are not operating. To avoid interference to LU, cognitive users (CU) need to perform spectrum sensing. Because of local shadowing, fading, or limited sensing capability, it is suggested that multiple CUs cooperate to detect LU. In cooperative spectrum sensing, CUs should exchange their sensing data with minimum bandwidth and delay. In this paper, we introduce a novel method to efficiently report sensing data to the central node in an infrastructured OFDM-based CR network. All CUs simultaneously report their sensing data over unique and orthogonal signals on locally available subcarriers. By detecting the signals, the central node can determine subcarrier availability for each CU. Implementation challenges are identified and then their solutions are suggested. The proposed method is evaluated through simulation on a realistic channel model. The results show that the proposed method is feasible and efficient.

Opportunistic Insights into Occupational Health Hazards Associated with Waterpipe Tobacco Smoking Premises in the United Kingdom

  • Al-Bakri, Ali;Jawad, Mohammed;Salameh, Pascale;al'Absi, Mustafa;Kassim, Saba
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.2
    • /
    • pp.621-626
    • /
    • 2015
  • Background: Smokefree laws aim to protect employees and the public from the dangers of secondhand smoke. Waterpipe premises have significantly increased in number in the last decade, with anecdotal reports of poor compliance with the smokefree law. The literature is bereft of information pertaining to waterpipe premise employees. This study aimed to opportunistically gather knowledge about the occupational health hazards associated with working in waterpipe premises in London, England. Materials and Methods: Employees from seven convenience-sampled, smokefree-compliant waterpipe premises in London were observed for occupational activities. Opportunistic carbon monoxide (CO) measurements were made among those with whom a rapport had developed. Observations were thematically coded and analysed. Results: Occupational hazards mainly included environmental smoke exposure. Waterpipe-serving employees were required to draw several puffs soon after igniting the coals, thereby providing quality assurance of the product. Median CO levels were 27.5ppm (range 21-55ppm) among these employees. Self-reported employee health was poor, with some suggestion that working patterns and smoke exposure was a contributory factor. Conclusions: The smokefree law in England does not appear to protect waterpipe premise employees from high levels of CO. Continued concerns surrounding chronic smoke exposure may contribute to poor self-reported physical and mental wellbeing.

Analysis on the candidate number of channels to transmit second users in the myopic/CA method for dynamic spectrum access (동적 스팩트럼 접속을 위한 myopic/CA 방식에서 이차 사용자가 전송할 후보채널수에 대한 분석)

  • Yang, Geun-ho;Ma, Hwan-gu;Lee, Yutae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.401-403
    • /
    • 2013
  • Myopic method which is one of dynamic spectrum access method is an advantage that it maximizes immediate throughput is not complicated, and the simple and effective. The disadvantage of myopic method is that there may become less efficient because of conflicts between users secondary secondary user becomes many. Between the secondary if the secondary all users, select a channel to maximize the throughput of their own without considering the secondary other users, but it will try transfer secondary most users select the same channel collision will be more. Myopic / CA method has been proposed to solve this problem. Instead of selecting one channel to maximize their performance, select a candidate channels plurality of their advantage, the secondary user transfers to randomly selected channel that one in this way is a scheme. In this paper, we analyze whether it can be defined in a number of the channel number of candidates, depending on the network environment, maximizes the performance of the entire network.

  • PDF

Exact Outage Probability of Two-Way Decode-and-Forward NOMA Scheme with Opportunistic Relay Selection

  • Huynh, Tan-Phuoc;Son, Pham Ngoc;Voznak, Miroslav
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.5862-5887
    • /
    • 2019
  • In this paper, we propose a two-way relaying scheme using non-orthogonal multiple access (NOMA) technology. In this scheme, two sources transmit packets with each other under the assistance of the decode-and-forward (DF) relays, called as a TWDFNOMA protocol. The cooperative relays exploit successive interference cancellation (SIC) technique to decode sequentially the data packets from received summation signals, and then use the digital network coding (DNC) technique to encrypt received data from two sources. A max-min criterion of end-to-end signal-to-interference-plus-noise ratios (SINRs) is used to select a best relay in the proposed TWDFNOMA protocol. Outage probabilities are analyzed to achieve exact closed-form expressions and then, the system performance of the proposed TWDFNOMA protocol is evaluated by these probabilities. Simulation and analysis results discover that the system performance of the proposed TWDFNOMA protocol is improved when compared with a conventional three-timeslot two-way relaying scheme using DNC (denoted as a TWDNC protocol), a four-timeslot two-way relaying scheme without using DNC (denoted as a TWNDNC protocol) and a two-timeslot two-way relaying scheme with amplify-and-forward operations (denoted as a TWANC protocol). Particularly, the proposed TWDFNOMA protocol achieves best performances at two optimal locations of the best relay whereas the midpoint one is the optimal location of the TWDNC and TWNDNC protocols. Finally, the probability analyses are justified by executing Monte Carlo simulations.

Symbol Based Rate Adaptation in Coded MIMO-OFDM Systems (심볼 기반의 적응 변조 기법을 이용한 채널 부호화된 MIMO-OFDM 시스템)

  • Sung, Chang-Kyung;Kim, Ji-Hoon;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.1A
    • /
    • pp.50-58
    • /
    • 2008
  • The use of space-division multiple access(SDMA) in the downlink of multiuser multi-input/multi-output(MIMO) wireless transmission systems can provide substantial gains in system throughput. When the channel state information(CSI) is available at the transmitter, a considerable performance improvement can be attained by adapting the transmission rates to the reported CSI. In addition, to combat frequency selective fadings in wideband wireless channels, bit-interleaved coded OFDM(BIC-OFDM) modulation schemes are employed to provide reliable packet delivery by utilizing frequency diversity through channel coding. In this paper, we propose an adaptive modulation and coding(AMC) scheme combined with an opportunistic scheduling technique for the MIMO BIC-OFDM with bandwidth-limited feedback channels. The proposed scheme enhances the link performance by exploiting both the frequency diversity and the multiuser diversity. To reduce the feedback information, the proposed AMC scheme employs rate adaptation methods based on an OFDM symbol rather than on the whole subchannels. Simulation results show that the proposed scheme exhibits a substantial performance gain with a reasonable complexity over single antenna systems.

Markov Chain Analysis of Opportunistic Cognitive Radio with Imperfect Sensing (불완전 센싱 기회적 인지 전파망의 Markov Chain 분석)

  • Ahn, Hong-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.6
    • /
    • pp.1-8
    • /
    • 2010
  • Wireless multimedia service through the access to mobile telephone network or data network is a vital part of contemporary life, and the demand for frequency spectrum for new services is expected to explode as the ubiquitous computing proliferate. Cognitive radio is a technology, which automatically recognizes and searches for temporally and spatially unused frequency spectrum, then actively determines the communication method, bandwidth, etc. according to the environment, thus utilizing the limited spectrum resources efficiently. In this paper, we investigate the effects of imperfect sensing, misdetection and false alarm, on the primary and secondary users' spectrum usage through the analysis of continuous time Markov Chain. We analyzed the effects of the parameters such as sensing error, offered load on the system performance.

Effect of Cooperative and Selection Relaying Schemes on Multiuser Diversity in Downlink Cellular Systems with Relays

  • Kang, Min-Suk;Jung, Bang-Chul;Sung, Dan-Keun
    • Journal of Communications and Networks
    • /
    • v.10 no.2
    • /
    • pp.175-185
    • /
    • 2008
  • In this paper, we investigate the effect of cooperative and selection relaying schemes on multiuser diversity in downlink cellular systems with fixed relay stations (RSs). Each mobile station (MS) is either directly connected to a base station (BS) and/or connected to a relay station. We first derive closed-form solutions or upper-bound of the ergodic and outage capacities of four different downlink data relaying schemes: A direct scheme, a relay scheme, a selection scheme, and a cooperative scheme. The selection scheme selects the best access link between the BS and an MS. For all schemes, the capacity of the BS-RS link is assumed to be always larger than that of RS-MS link. Half-duplex channel use and repetition based relaying schemes are assumed for relaying operations. We also analyze the system capacity in a multiuser diversity environment in which a maximum signal-to-noise ratio (SNR) scheduler is used at a base station. The result shows that the selection scheme outperforms the other three schemes in terms of link ergodic capacity, link outage capacity, and system ergodic capacity. Furthermore, our results show that cooperative and selection diversity techniques limit the performance gain that could have been achieved by the multiuser diversity technique.

A Simple Cooperative Transmission Protocol for Energy-Efficient Broadcasting Over Multi-Hop Wireless Networks

  • Kailas, Aravind;Thanayankizil, Lakshmi;Ingram, Mary Ann
    • Journal of Communications and Networks
    • /
    • v.10 no.2
    • /
    • pp.213-220
    • /
    • 2008
  • This paper analyzes a broadcasting technique for wireless multi-hop sensor networks that uses a form of cooperative diversity called opportunistic large arrays (OLAs). We propose a method for autonomous scheduling of the nodes, which limits the nodes that relay and saves as much as 32% of the transmit energy compared to other broadcast approaches, without requiring global positioning system (GPS), individual node addressing, or inter-node interaction. This energy-saving is a result of cross-layer interaction, in the sense that the medium access control (MAC) and routing functions are partially executed in the physical (PHY) layer. Our proposed method is called OLA with a transmission threshold (OLA-T), where a node compares its received power to a threshold to decide if it should forward. We also investigate OLA with variable threshold (OLA-VT), which optimizes the thresholds as a function of level. OLA-T and OLA-VT are compared with OLA broadcasting without a transmission threshold, each in their minimum energy configuration, using an analytical method under the orthogonal and continuum assumptions. The trade-off between the number of OLA levels (or hops) required to achieve successful network broadcast and transmission energy saved is investigated. The results based on the analytical assumptions are confirmed with Monte Carlo simulations.