• 제목/요약/키워드: opportunistic access

검색결과 70건 처리시간 0.023초

랜덤 엑세스 스몰셀 무선망에서의 실시간 기회적 간섭정렬 기법 연구 (Dynamic Opportunistic Interference Alignment for Random-Access Small-Cell Networks)

  • 전상운;신원용
    • 한국통신학회논문지
    • /
    • 제39A권11호
    • /
    • pp.675-681
    • /
    • 2014
  • 최근 무선트래픽 수요가 폭발적으로 증가하면서 셀룰라 무선망에서 이를 효율적으로 지원하기 위한 스몰셀 연구가 활발히 수행중이다. 본 논문은 랜덤 엑세스 스몰셀 무선망에서의 간섭제어 기법에 대해 연구하였다. 기존 랜덤 엑세스 망의 경우 셀내의 사용자간 간섭제어에만 초점이 맞춰져 있지만, 스몰셀 환경에서는 셀간의 간섭이 램덤 엑세스 망의 성능을 열화시키는 주요 요인이다. 이러한 문제를 해결하기 위하여 랜덤 엑세스의 확률 특성을 반영한 실시간 기회적 간섭정렬 기법을 제안하였다. 제안기법을 통하여 기존기법 대비 셀수가 증가할수록 또한 셀내의 사용자수가 증가할수록 전송율이 획기적으로 향상됨을 모의실험을 통해 확인하였다.

무선 LAN을 위한 opportunistic 패킷 스케줄링 및 매체접근제어 (Opportunistic Packet Scheduling and Media Access Control for Wireless LANs)

  • 박형근
    • 한국통신학회논문지
    • /
    • 제33권2A호
    • /
    • pp.191-197
    • /
    • 2008
  • 시변 무선채널에서 버스트한 패킷을 효율적으로 전송하기 위해서는 다중사용자 다이버시티 이득을 극대화할 수 있는 opportunistic 스케줄링 기법이 중요한 기술적 요소가 되고 있다. 본 논문에서는 무선 LAN 네트워크에 적용 가능한 분산화된 opportunistic 스케줄링기법을 제안하였다. Opportunistic 스케줄링방식의 하나인 비례공정 알고리즘은 중앙집중형 네트워크에 적용되었으나 본 논문에서는 확률적 방식을 이용하여 분산화된 방식의 비례공정 스케줄링 (DPFS: Distributed Proportional Fair Scheduling) 방식과 매체 접근제어 방식을 설계하였다. 제안한 DPFS방식에서는 각각의 수신기들은 채널상태를 파악한 후 독립적으로 자신의 우선순위를 확률적 방법으로 계산하기 때문에 모든 수신기의 채널 정보를 수집하는데 필요한 오버헤드를 크게 줄일 수 있다. 성능분석을 위하여 시뮬레이션을 수행하였으며 제안된 스케줄링 방식이 기존의 분산 스케줄링방식에 비하여 전송률 성능에서 우수함을 보이고 있으며 관련 파라미터를 조절함으로써 공평성과 전송률성능에 대한 제어가 가능함을 보이고 있다.

Performance Analysis of Opportunistic Spectrum Access Protocol for Multi-Channel Cognitive Radio Networks

  • Kim, Kyung Jae;Kwak, Kyung Sup;Choi, Bong Dae
    • Journal of Communications and Networks
    • /
    • 제15권1호
    • /
    • pp.77-86
    • /
    • 2013
  • Cognitive radio (CR) has emerged as one of effective methods to enhance the utilization of existing radio spectrum. Main principle of CR is that secondary users (SUs) are allowed to use the spectrum unused by primary users (PUs) without interfering PU's transmissions. In this paper, PUs operate on a slot-by-slot basis and SUs try to exploit the slots unused by PUs. We propose OSA protocols in the single channel and we propose an opportunistic spectrum access (OSA) protocols in the multi-channel cognitive radio networks with one control channel and several licensed channels where a slot is divided into contention phase and transmission phase. A slot is divided into reporting phase, contention phase and transmission phase. The reporting phase plays a role of finding idle channels unused by PUs and the contention phase plays a role of selecting a SU who will send packets in the data transmission phase. One SU is selected by carrier sense multiple access / collision avoidance (CSMA/CA) with request to send / clear to send (RTS/CTS) mechanism on control channel and the SU is allowed to occupy all remaining part of all idle channels during the current slot. For mathematical analysis, first we deal with the single-channel case and we model the proposed OSA media access control (MAC) protocol by three-dimensional discrete time Markov chain (DTMC) whose one-step transition probability matrix has a special structure so as to apply the censored Markov chain method to obtain the steady state distribution.We obtain the throughput and the distribution of access delay. Next we deal with the multi-channel case and obtain the throughput and the distribution of access delay by using results of single-channel case. In numerical results, our mathematical analysis is verified by simulations and we give numerical results on throughput and access delay of the proposed MAC protocol. Finally, we find the maximum allowable number of SUs satisfying the requirements on throughput and access delay.

Opportunistic Spectrum Access Based on a Constrained Multi-Armed Bandit Formulation

  • Ai, Jing;Abouzeid, Alhussein A.
    • Journal of Communications and Networks
    • /
    • 제11권2호
    • /
    • pp.134-147
    • /
    • 2009
  • Tracking and exploiting instantaneous spectrum opportunities are fundamental challenges in opportunistic spectrum access (OSA) in presence of the bursty traffic of primary users and the limited spectrum sensing capability of secondary users. In order to take advantage of the history of spectrum sensing and access decisions, a sequential decision framework is widely used to design optimal policies. However, many existing schemes, based on a partially observed Markov decision process (POMDP) framework, reveal that optimal policies are non-stationary in nature which renders them difficult to calculate and implement. Therefore, this work pursues stationary OSA policies, which are thereby efficient yet low-complexity, while still incorporating many practical factors, such as spectrum sensing errors and a priori unknown statistical spectrum knowledge. First, with an approximation on channel evolution, OSA is formulated in a multi-armed bandit (MAB) framework. As a result, the optimal policy is specified by the wellknown Gittins index rule, where the channel with the largest Gittins index is always selected. Then, closed-form formulas are derived for the Gittins indices with tunable approximation, and the design of a reinforcement learning algorithm is presented for calculating the Gittins indices, depending on whether the Markovian channel parameters are available a priori or not. Finally, the superiority of the scheme is presented via extensive experiments compared to other existing schemes in terms of the quality of policies and optimality.

Channel Statistical MAC Protocol for Cognitive Radio

  • Xiang, Gao;Zhu, Wenmin;Park, Hyung-Kun
    • Journal of information and communication convergence engineering
    • /
    • 제8권1호
    • /
    • pp.40-44
    • /
    • 2010
  • opportunistic spectrum access (OSA) allows unlicensed users to share licensed spectrum in space and time with no or little interference to primary users, with bring new research challenges in MAC design. We propose a cognitive MAC protocol using statistical channel information and selecting appropriate idle channel for transmission. The protocol based on the CSMA/CA, exploits statistics of spectrum usage for decision making on channel access. Idle channel availability, spectrum hole sufficiency and available channel condition will be included in algorithm statistical information. The model include the control channel and data channel, the transmitter negotiates with receiver on transmission parameters through control channel, statistical decision results (successful rate of transmission) from exchanged transmission parameters of control channel should pass the threshold and decide the data transmission with spectrum hole on data channel. A dynamical sensing range as a important parameter introduced to maintain the our protocol performance. The proposed protocol's simulation will show that proposed protocol does improve the throughput performance via traditional opportunistic spectrum access MAC protocol.

Opportunistic Spectrum Access with Dynamic Users: Directional Graphical Game and Stochastic Learning

  • Zhang, Yuli;Xu, Yuhua;Wu, Qihui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권12호
    • /
    • pp.5820-5834
    • /
    • 2017
  • This paper investigates the channel selection problem with dynamic users and the asymmetric interference relation in distributed opportunistic spectrum access systems. Since users transmitting data are based on their traffic demands, they dynamically compete for the channel occupation. Moreover, the heterogeneous interference range leads to asymmetric interference relation. The dynamic users and asymmetric interference relation bring about new challenges such as dynamic random systems and poor fairness. In this article, we will focus on maximizing the tradeoff between the achievable utility and access cost of each user, formulate the channel selection problem as a directional graphical game and prove it as an exact potential game presenting at least one pure Nash equilibrium point. We show that the best NE point maximizes both the personal and system utility, and employ the stochastic learning approach algorithm for achieving the best NE point. Simulation results show that the algorithm converges, presents near-optimal performance and good fairness, and the directional graphical model improves the systems throughput performance in different asymmetric level systems.

셀룰라 IoT 네트워크를 위한 파일럿 지원 기회적 전송 기반 임의 접속 기법 (A Random Access based on Pilot-Assisted Opportunistic Transmission for Cellular IoT Networks)

  • 김태훈;채승호
    • 한국정보통신학회논문지
    • /
    • 제23권10호
    • /
    • pp.1254-1260
    • /
    • 2019
  • 최근 5세대 이동통신 시스템은 4차 산업혁명의 핵심 요소로 큰 주목을 받고 있다. 본 논문에서는, 이동통신 시스템에서 사물인터넷 시나리오를 지원하기 위해 파일럿 지원 기회적 전송 기반의 새로운 임의 접속 기법을 제안한다. 제안하는 기법은 임의 접속 절차 3단계에서 데이터 패킷을 전송할 때 다수 개의 상향링크 자원 중 하나의 자원을 임의로 선택하여 기회적 전송을 하는 동시에 데이터 복호를 위해 각 데이터 패킷에 다중화하는 상향링크 파일럿 신호 또한 임의로 선택하게 함으로써 패킷 충돌 확률을 획기적으로 낮추는 것을 주요 특징으로 한다. 확률 모델을 이용하여 패킷 충돌 확률 및 상향링크 자원 효율 관점에서 제안한 기법을 수학적으로 분석 하고, 모의실험을 통해 분석의 유효성을 확인하고 제안 기법의 우수성을 입증한다.

Power Allocation Schemes For Downlink Cognitive Radio Networks With Opportunistic Sub-channel Access

  • Xu, Ding;Feng, Zhiyong;Zhang, Ping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권7호
    • /
    • pp.1777-1791
    • /
    • 2012
  • This paper considers a downlink cognitive radio (CR) network where one secondary user (SU) and one primary user (PU) share the same base station (BS). The spectrum of interest is divided into a set of independent, orthogonal subchannels. The communication of the PU is of high priority and the quality of service (QoS) is guaranteed by the minimum rate constraint. On the other hand, the communication of the SU is of low priority and the SU opportunistically accesses the subchannels that were previously discarded by the PU during power allocation. The BS assigns fractions ?? and 1 ?? of the total available transmit power to the PU and the SU respectively. Two power allocation schemes with opportunistic subchannel access are proposed, in which the optimal values of ??'s are also obtained. The objective of one scheme is to maximize the rate of the SU, and the objective of the other scheme is to maximize the sum rate of the SU and the PU, both under the PU minimum rate constraint and the total transmit power constraint. Extensive simulation results are obtained to verify the effectiveness of the proposed schemes.

Two-Dimensional POMDP-Based Opportunistic Spectrum Access in Time-Varying Environment with Fading Channels

  • Wang, Yumeng;Xu, Yuhua;Shen, Liang;Xu, Chenglong;Cheng, Yunpeng
    • Journal of Communications and Networks
    • /
    • 제16권2호
    • /
    • pp.217-226
    • /
    • 2014
  • In this research, we study the problem of opportunistic spectrum access (OSA) in a time-varying environment with fading channels, where the channel state is characterized by both channel quality and the occupancy of primary users (PUs). First, a finite-state Markov channel model is introduced to represent a fading channel. Second, by probing channel quality and exploring the activities of PUs jointly, a two-dimensional partially observable Markov decision process framework is proposed for OSA. In addition, a greedy strategy is designed, where a secondary user selects a channel that has the best-expected data transmission rate to maximize the instantaneous reward in the current slot. Compared with the optimal strategy that considers future reward, the greedy strategy brings low complexity and relatively ideal performance. Meanwhile, the spectrum sensing error that causes the collision between a PU and a secondary user (SU) is also discussed. Furthermore, we analyze the multiuser situation in which the proposed single-user strategy is adopted by every SU compared with the previous one. By observing the simulation results, the proposed strategy attains a larger throughput than the previous works under various parameter configurations.

Increasing Throughput in Energy-Based Opportunistic Spectrum Access Energy Harvesting Cognitive Radio Networks

  • Yao, Yuanyuan;Yin, Changchuan;Song, Xiaoshi;Beaulieu, Norman C.
    • Journal of Communications and Networks
    • /
    • 제18권3호
    • /
    • pp.340-350
    • /
    • 2016
  • The performance of large-scale cognitive radio (CR) networks with secondary users sustained by opportunistically harvesting radio-frequency (RF) energy from nearby primary transmissions is investigated. Using an advanced RF energy harvester, a secondary user is assumed to be able to collect ambient primary RF energy as long as it lies inside the harvesting zone of an active primary transmitter (PT). A variable power (VP) transmission mode is proposed, and an energy-based opportunistic spectrum access (OSA) strategy is considered, under which a secondary transmitter (ST) is allowed to transmit only if its harvested energy is larger than a predefined transmission threshold and it is outside the guard zones of all active PTs. The transmission probability of the STs is derived. The outage probabilities and the throughputs of the primary and the secondary networks, respectively, are characterized. Compared with prior work, the throughput can be increased by as much as 29%. The energy-based OSA strategy can be generally applied to a non-CR setup, where distributed power beacons (PBs) are deployed to power coexisting wireless signal transmitters (WSTs) in a wireless powered sensor network.