• Title/Summary/Keyword: opioid peptides

Search Result 20, Processing Time 0.025 seconds

BIOACTIVE PEPTIDES DERIVED FROM FOOD PROTEINS AND PREVENTION OF LIFE-STYLE RELATED DISEASES

  • Yoshikawa Masaaki
    • Proceedings of the Korean Society of Food Science and Nutrition Conference
    • /
    • 2001.12a
    • /
    • pp.69-73
    • /
    • 2001
  • Two opioid peptides, YPLDL and YPLDLF, were isolated from enzymatic digests of spinach ribulose-1, 5-bisphosphate carboxylase/oxygenase (RuBisCO) and named rubiscolin-5 and -6, respectively. These peptides were selective for delta-receptor and the latter was about 3 times more potent than the former. After oral administration in mice at the dose of 100 mg/kg, rubiscolin-6 showed analgesic activity in tail pinch test. It also stimutated learning performance at the same dose in passive avoidance experiment using step-through apparatus. An immunostimulating peptide, MITLAIPVNKPGR, was isolated from a trypsin digest of soybean protein and named soymetide. Immunostimulating activy of soymetide was mediated by fMLP receptor. Interestingly, after oral administration in rats at a dose of 300 mg/kg (po.), soymetide-4 (MITL) protected alopecia (hair-loss) induced by etoposide, a cancer chemotherapy agent. Stimulation of IL-1 release by the peptide was involved in the mechanism. Ovokinin(2-7), RADHPF, is a vasorelaxing peptide released from ovalbumin by the action of chymotrypsin. It lowered blood pressure of spontaneously hypersensive rats (SHR) after oral administration at a dose of 10 mg/kg. RPLKPW, which was designed by replacing 4 amino acid residues in ovokinin(2-7), exhibited hypotensive activity at a dose of 0.1 mg/kg (po.). This peptides was introduced into 3 homologous sites in soybean beta-conglycinin alpha' subunit by site-directed mutagenesis of the cDNA and expressed in E. coli. The minimum effective dose for hypotensive activity of the genetically modified beta-conglycinin alpha' subunit was 10 mg/kg (po.), which is about 1/200 that of ovalbumin.

  • PDF

Maladaptive Behavior and Gastrointestinal Disorders in Children with Autism Spectrum Disorder

  • Pusponegoro, Hardiono D.;Ismael, Sofyan;Sastroasmoro, Sudigdo;Firmansyah, Agus;Vandenplas, Yvan
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.18 no.4
    • /
    • pp.230-237
    • /
    • 2015
  • Purpose: Various gastrointestinal factors may contribute to maladaptive behavior in children with autism spectrum disorders (ASD). To determine the association between maladaptive behavior in children with ASD and gastrointestinal symptoms such as severity, intestinal microbiota, inflammation, enterocyte damage, permeability and absorption of opioid peptides. Methods: This observational cross-sectional study compared children with ASD to healthy controls, aged 2-10 years. Maladaptive behavior was classified using the Approach Withdrawal Problems Composite subtest of the Pervasive Developmental Disorder Behavior Inventory. Dependent variables were gastrointestinal symptom severity index, fecal calprotectin, urinary D-lactate, urinary lactulose/mannitol excretion, urinary intestinal fatty acids binding protein (I-FABP) and urinary opioid peptide excretion. Results: We did not find a significant difference between children with ASD with severe or mild maladaptive behavior and control subjects for gastrointestinal symptoms, fecal calprotectin, urinary D-lactate, and lactulose/mannitol ratio. Urinary opioid peptide excretion was absent in all children. Children with ASD with severe maladaptive behavior showed significantly higher urinary I-FABP levels compared to those with mild maladaptive behavior (p=0.019) and controls (p=0.015). Conclusion: In our series, maladaptive behavior in ASD children was not associated with gastrointestinal symptoms, intestinal inflammation (no difference in calprotectin), microbiota (no difference in urinary D-lactate) and intestinal permeability (no difference in lactulose/manitol ratio). ASD children with severe maladaptive behavior have significantly more enterocyte damage (increased urinary I-FABP) than ASD children with mild maladaptive behavior and normal children.

Effect of Opioid on Nicotinic Receptor-Mediated Catecholamine Secretion in the Rat Adrenal Gland (횐쥐 부신에서 Opioid가 니코틴 수용체를 통한 카테콜아민 분비작용에 미치는 영향)

  • Lim, Dong-Yoon;Lee, Jong-Jin;Choi, Cheol-Hee
    • The Korean Journal of Pharmacology
    • /
    • v.28 no.2
    • /
    • pp.181-190
    • /
    • 1992
  • The present study was conducted to investigate the effect of opioids on catecholamine (CA) secretion evoked by a selective cholinergic nicotinic agonist, 1,1-dimethyl-4-phenyl piperazinium (DMPP) and acetylcholine from the retrogradely perfused rat adrenal glands. Methionine-enkephalin $(9.68{\times}10^{-6}\;M)$ caused a significant inhibition of CA secretion evoked by DMPP (100 uM) and $ACh\;(50\;{\mu}g)$, but had no effect on the spontaneous (basal) CA release. Morphine $(1.73{\times}10^{-5}\;M)$ attenuated considerablely the increase in CA release induced by DMPP and ACh. Morphine itself also did not affect the basal CA output. A 20 to 65% reduction of the DMPP- and ACh-evoked increase in CA release was observed after the pretreatment with methionine-enkephalin or morphine. The increase in CA release evoked by DMPP and ACh was reduced markedly by preloading with an opiate antagonist naloxone $(1.22{\times}10^{-7}\;M)$ while basal CA output was not affected by naloxone. These present experimental results suggest that the nicotinic stimulation-evoked CA release from the perfused rat adrenal gland is inhibited by endogenously released opioid peptides through activation of opiate receptors located in the adrenal gland.

  • PDF

Progress of Pruritus Research in Atopic Dermatitis

  • Lee, Chang-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.18 no.3
    • /
    • pp.246-256
    • /
    • 2010
  • Atopic dermatitis is a common skin disease affecting up to 10% of children and approximately 2% of adults. Atopic dermatitis exhibits four major symptoms, including intense itching, dry skin, redness and exudation. The "itch-scratch-itch" cycle is one of the major features in atopic dermatitis. The pathophysiology and neurobiology of pruritus is unclear. Currently there are no single and universally effective pharmacological antipruritic drugs for treatment of atopic dermatitis. Thus, controlling of itch is a very important unmet need in patients suffering from atopic dermatitis. This article will update progress during the past 10 years of research in the field of pruritus of atopic dermatitis, focusing on aspects of pruritogens (including inflammatory lipids, histamine, serotonin, proteinases, proteinase-activating receptors, neurotransmitters, neuropeptides, and opioid peptides), antipruritic therapies, and emerging new targets. Based on recent progress, researchers expect to identify exciting possibilities for improved treatments and to develop new antipruritic drugs acting through novel targets, such as histamine H4 receptor, gastrin-releasing peptide receptor, MrgprA3, thromboxane A2 receptor and the putative SPC receptor.

Structure-Activity Relationships of 13- and 14-Membered Cyclic Partial Retro-Inverso Pentapeptides Related to Enkephalin

  • Hong, Nam-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.874-880
    • /
    • 2010
  • A series of 13- and 14-membered cyclic enkephalin analogs based on the moderately $\mu$ selective prototype compound Tyr-C[D-$A_2bu$-Gly-Phe-Leu] 8a were synthesized to investigate the structure-activity relationship. The modifications of sequence were mainly focused on two positions 3 and 5, critical for the selective recognition for $\mu$ and $\delta$ opioid receptors. The substitution of hydrophobic $Leu^5$ with hydrophilic $Asp^5$ derivatives led to Tyr-C[D-$A_2bu$-Gly-Phe-Asp(N-Me)] 7 and Tyr-C[D-Glu-Phe-gPhe-rAsp(O-Me)] 5, the peptides with a large affinity losses at both $\mu$ and $\delta$ receptors. The substitution of $Phe^3$ with $Gly^3$ led to Tyr-C[D-Glu-Gly-gPhe-rLeu] 3 and Tyr-C[D-Glu-Gly-gPhe-D-rLeu] 4, the peptides with large affinity losses at $\mu$ receptors, indicating the critical role of phenyl ring of $Phe^3$ for $\mu$ receptor affinities. One atom reduction of the ring size from 14-membered analogs Tyr-C[D-Glu-Phe-gPhe-(L and D)-rLeu] 6a, 6b to 13-membered analogs Tyr-C[D-Asp-Phe-gPhe-(L and D)-rLeu] 1, 2 reduced the affinity at both $\mu$ and $\delta$ receptors, but increased the potency in the nociceptive assay, indicating the ring constrain is attributed to high nociceptive potency of the analogs. For the influence of D- or L-chirality of $Leu^5$ on the receptor selectivity, regardless of chirality and ring size, all cyclic diastereomers displayed marked $\mu$ selectivity with low potencies at the $\delta$ receptor. The retro-inverso analogs display similar or more active at $\mu$ receptor, but less active at $\delta$ receptor than the parent analogs.

STABILITY OF A DISULFIDE BOND OF CHIMERIC PEPTIDE DURING IN VIVO TRANSCYTOSIS THROUGH THE BRAIN ENDOTHELIAL CELLS

  • Kang, Young-Sook;Ulrich Bickel
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.150-151
    • /
    • 1998
  • Drug delivery to the brain is facilitated by the synthesis of chimeric peptides, where in neuropharmaceuticals are linked to a vector such as an antibody to the transferrin receptor that mediates transcytosis through the blood-brain barrier (BBB). When disulfide linkers are used in the chimeric peptide, it is crucial that the S-S bridge is stable during transit and that cleavage does not occur prematurely within endothelial cells, as the peptide drug moiety would then be sequestered by the BBB instead of passing through it. The present study addressed that problem. As a model drug a metabolically stable opioid peptide, [$^3$H]DALDA (Tyr-dArg-Phe-Lys-NH$_2$), was used. It was monobiotinylated with NHS-SS-biotin to yield bio-[$^3$H]DALDA. The biotinylated peptide was bound to the vector OX26-SA which is a covalent conjugate of OX26 and streptavidin (molar ratio = 1: 1). In vitro treatment of the chimeric peptide, bio-[$^3$H]DALDA/OX26-SA, with a reducing agent, dithiothreitol, released the labeled peptide from the vector by conversion of bio-[$^3$H]DALDA to the desbiotinylated derivative, desbio-[$^3$H]DALDA.

  • PDF

Serum ${\beta}$-endorphin during Human Menopausal Gonadotropin-Hyperstimulated Menstrual Cycles (Human Menopausal Gonadotropin으로 과배란유도된 월경주기에서의 혈청 ${\beta}$-endorphin에 과한 연구)

  • Kim, Jung-Gu;Mun, Shin-Yong;Chang, Yoon-Seok;Lee, Jin-Yong
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.17 no.2
    • /
    • pp.159-165
    • /
    • 1990
  • It has been reported that endogenous opioid peptides play a role in the control of the reproductive function. The goal of this study was to evaluate changs in the serum levels of ${\beta}$-endorphin during hyperstimulated menstrual cycle and their relationship to serum prolactin levels. Serum ${\beta}$-endorphin and prolactin levels were measured during menstrual cycles of 10 normal cylic women hyperstimulated by human menopausal gonadotropin (HMG) and of 10 women by clomiphene/HMG among in vitro fertilization candidates. The results were summarized as follows. 1. In clomiphene/HMG hyperstimulated menstrual cycle the mean serum ${\beta}$-endorphin level insignificantly on 2 day before aspiration of oocyte compared to basal level and reached maximum level on 1 day after aspiration. 2. There was a significant peak of the mean serum ${\beta}$-endorphin level on 1 day before aspiration in HMG hyperstimulated menstrual cycle. 3. On the same day from aspiration, there was no significant differences in the mean serum ${\beta}$-endorphin levels between HMG and clomiphene/HMG hyperstimulated cycles. 4. No significant correlation was noted between serum ${\beta}$-endorphin levels and prolactin levels.

  • PDF

Neuroendocrine Control of Gonadotropin Secretion during the Menstrual Cycle

  • Ryu, Kyung-Za
    • The Korean Journal of Pharmacology
    • /
    • v.23 no.2
    • /
    • pp.57-75
    • /
    • 1987
  • Two modalities of gonadotropin secretion, pulsatile gonadotropin and preovulatory gonadotropin surge, have been identified in the mammals. Pulsatile gonadotropin secretion is modulated by the pulsatile pattern of GnRH release and complex ovarian steroid feedback actions. The neural mechansim that regulates the pulsatile release of GnRH in the hypothalamus is called "GnRH pulse generator". Ovarian steroids, estradiol and progesterone, appear to exert thier feedback effects both directly on the pituitary to modulate gonadotropin release and on a hypothalamic site to modulate GnRH release; estradiol primarily affects the amplitude while progesterone decreases the frequency of the pulsatile GnRH. Steroid hormones are known to affect catecholamine transmission in brain. MBH-POA is richly innervated by NE systems and close apposition of NE terminals and GnRH cell bodies occurs in the MBH as well as in the POA. NE normally facilitates pulsatile LH release by acting through ${\alpha}-receptor$ mechanism. However, precise nature of facilitative role of NE transmission in maintaining pulsatile LH has not been clearly understood. Close apposition of DA and GnRH terminals in ME might permit DA to influence GnRH release. Action of DA transmission probably is mediated by axo-axonic contacts between GnRH and DA fibers in the ME. Dopamine transmission does not normally regulate pulsatile LH release, but under certain conditions, increased DA transmission inhibit LH pulse. Endogenous opioid acts to suppress the secretion of GnRH into hypophysial portal circulation, thereby inhibiting gonadotropin secretion. However, an interaction between endogenenous opioid peptides and gonadotropin release is a complex one which involves ovarian hormones as well. LH secretion appears to be most suppressed by endogenenous opioids during the luteal phase, at a time of elevated progesterone secretion. The arcuate nucleus contains not only cell bodies for GnRH and ${\beta}-endorphin$ but also a dense aborization of fibers suggesting that GnRH release is changed by the interactions between GnRH and ${\beta}-endorphin$ cell bodies within the arcuate nucleus. The frequency and amplitude of pulsatile LH release seem to be increased during the preovulatory gonadotropin surge. Estradiol exerts positive feedback action on the hypothalamo-pituitary axis to trigger preovulatory LH surge. GnRH is also crucial hormonal stimulus for preovulatory LH surge. It is unlikely, however, that increased secretion of GnRH during the preovulatory gonadotropin surge represents an obligatory neural signal for generation of the LH discharge in primates including human. Modulation of preovulatory LH surge by catecholamines has been studied almost exclusively in rats. NE and E may be involved in distinct way to accumulate GnRH in the MBH and its release into the hypophysial portal system during the critical period for LH surge on proestrus in rats. However, the mechanisms whereby augmented adrenergic transmission may facilitate the formation and accumulation of GnRH in the ME-ARC nerve terminals before the LH surge have not been clearly understood.

  • PDF

Transcriptional Regulatory Role of NELL2 in Preproenkephalin Gene Expression

  • Ha, Chang Man;Kim, Dong Hee;Lee, Tae Hwan;Kim, Han Rae;Choi, Jungil;Kim, Yoonju;Kang, Dasol;Park, Jeong Woo;Ojeda, Sergio R.;Jeong, Jin Kwon;Lee, Byung Ju
    • Molecules and Cells
    • /
    • v.45 no.8
    • /
    • pp.537-549
    • /
    • 2022
  • Preproenkephalin (PPE) is a precursor molecule for multiple endogenous opioid peptides Leu-enkephalin (ENK) and Met-ENK, which are involved in a wide variety of modulatory functions in the nervous system. Despite the functional importance of ENK in the brain, the effect of brain-derived factor(s) on PPE expression is unknown. We report the dual effect of neural epidermal growth factor (EGF)-like-like 2 (NELL2) on PPE gene expression. In cultured NIH3T3 cells, transfection of NELL2 expression vectors induced an inhibition of PPE transcription intracellularly, in parallel with downregulation of protein kinase C signaling pathways and extracellular signal-regulated kinase. Interestingly, these phenomena were reversed when synthetic NELL2 was administered extracellularly. The in vivo disruption of NELL2 synthesis resulted in an increase in PPE mRNA level in the rat brain, suggesting that the inhibitory action of intracellular NELL2 predominates the activation effect of extracellular NELL2 on PPE gene expression in the brain. Biochemical and molecular studies with mutant NELL2 structures further demonstrated the critical role of EGF-like repeat domains in NELL2 for regulation of PPE transcription. These are the first results to reveal the spatio-specific role of NELL2 in the homeostatic regulation of PPE gene expression.

Neuropeptides in Clinical Psychiatric Research : Endorphins and Cholecystokinins (정신질환에 있어서의 신경펩타이드 연구 - Endorphin과 cholecystokinin을 중심으로 -)

  • Kim, Young Hoon;Shim, Joo Chul
    • Korean Journal of Biological Psychiatry
    • /
    • v.5 no.1
    • /
    • pp.34-45
    • /
    • 1998
  • We provide the reader with a brief introduction to the neurobiology of neuropeptides. Several comprehensive reviews of the distribution and neurochemical, neurophysiological, neuropharmacological and behavioral effects of the major neuropeptides have recently appeared. In reviews of the large number of neuropeptides in brain and their occurance in brain regions thought to be involved in the pathogenesis of major psychiatric disorders, investigators have sought to determine whether alternations in neuropeptide systems are associated with schizophrenia, mood disorders, anxiety disorders, alcoholism and neurodegenerative disease. There is no longer any doubt that neuropeptide-containing neurons are altered in several neuropsychiatric disorders. One of the factors that has hindered neuropeptide research to a considerable extent is the lack of pharmacological agents that specifically alter the synaptic availability of neuropeptides. With the exception of naloxone and naltrexone, the opiate-receptor antagonists, there are few available neuropeptide- receptor antagonists. Two independent classes of neuropeptide-receptor antagonists has been expected to be clinically useful. Naltrexone, a potent ${\mu}$-receptor antagonist, has been used successfully to reduce the need for alcohol consumption. And cholecycstokinin antagonists are now in development as a new class of anxiolytics, which would be expected to be free from tolerance and physical dependence and lack of sedation. In this review, we deal with these two kinds of neuropeptide system, the opioid system and cholesystokinins in the brain. The role of opioid systems in the reinforcement after alcohol consumtion and that of cholesystokinins in the pathogenesis of anxiety will be discussed briefly. As we know, the future for neuropeptides in psychiatry remains bright indeed.

  • PDF