• Title/Summary/Keyword: operational safety

Search Result 964, Processing Time 0.035 seconds

A Study on the Development of Web-based Preventive Maintenance System for the Driverless Rubber-Tired K-AGT (한국형 무인운전 고무차륜 AGT 시스템의 유지보수를 위한 신뢰성 기반의 고장 예방정비 시스템 개발에 관한 연구)

  • Son, Young-Tak;Chun, Hwan-Kyu;Uhm, Ho-Young;Lee, Ho-Yong;Han, Seok-Youn;Suh, Myung-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.5
    • /
    • pp.36-47
    • /
    • 2010
  • The Korean Railroad Research Institute (KRRI) has developed the rubber tired AGT system (Model: K-AGT) between 1999 and 2005. The K-AGT is a light rail transit system does not require a driver and generally operates on an elevated railroad for transporting passengers. Accidents caused by driverless vehicles can severely affect social confidence, safety and economy therefore, it is very important to minimize the occurrences of such faults, and to accurately perform detailed maintenance tasks and thoroughly investigate the cause of any repeated failures. This research develops the web-based Preventive Maintenance (PM) system for the KAGT train system. The framework of the PM system is based on performing a reliability analysis and a failure mode effects analyses (FMEA) procedure on all the sub-systems in the K-AGT system. Out of the devices that have a low reliability, the high failure ranked devices are included high in the list for performing the overall maintenance plans. Through registration of historical failure data, the reliability indexes can be updated. Such a process is repeated continuously and can achieve very accurate predictions for device operational life times and failure rates. Therefore, this research describes the development of the overall PM system consists of a reliability analysis module, a failure mode effect analysis module, and maintenance request module.

Development of Sleeve Patterns of Structural Firefighting Protective Clothing using by 3D Body Shape and 3D Motion Analysis (3차원 인체형상과 3차원 동작분석에 의한 방화복 소매패턴 개발)

  • Han, Sul-Ah;Nam, Yun-Ja;Yoon, Hye-Jun;Lee, Sang-Hee;Kim, Hyun-Joo
    • Fashion & Textile Research Journal
    • /
    • v.14 no.1
    • /
    • pp.109-121
    • /
    • 2012
  • This study aims at developing ergonomics patterns for the sleeve of structural firefighting protective clothing through 3D motion analysis in order to ensure efficiency and safety of firefighters who are exposed to harmful environment at work. A new research pattern was developed by applying the total results of 3D motion analysis, changes of body surface length measurements, and 2D data on 3D body shape analysis on the size 3 patterns of the existing coat sleeve. For the sleeves, we used the body surface length of the range of shoulder's flexion and the joint angle of the range of wrist's ulnar deviation. And for the production of structural firefighting protective clothing using the research pattern, we recruited a recognized producer of structural firefighting protective clothing designated by KFI. Unlike everyday clothes, structural firefighting protective clothing should be able to fully protect the wearers from the harmful environment that threatens their lives and should not cause any restrictions on their movement. Therefore, the focus of research and development of such protective clothing should be placed on consistent development of new technologies and production methods that will provide protection and comfort for the wearer rather than production cost reduction or operational efficiency. This study is meaningful as it applied 3D motion analysis instead of the existing methods to develop the patterns. In particular, since 3D motion analysis enables the measurement of the range of motion, there should be continuous research on the development of ergonomics patterns that consider workers' range of motion.

Prognostics and Health Management for Battery Remaining Useful Life Prediction Based on Electrochemistry Model: A Tutorial (배터리 잔존 유효 수명 예측을 위한 전기화학 모델 기반 고장 예지 및 건전성 관리 기술)

  • Choi, Yohwan;Kim, Hongseok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.939-949
    • /
    • 2017
  • Prognostics and health management(PHM) is actively utilized by industry as an essential technology focusing on accurately monitoring the health state of a system and predicting the remaining useful life(RUL). An effective PHM is expected to reduce maintenance costs as well as improve safety of system by preventing failure in advance. With these advantages, PHM can be applied to the battery system which is a core element to provide electricity for devices with mobility, since battery faults could lead to operational downtime, performance degradation, and even catastrophic loss of human life by unexpected explosion due to non-linear characteristics of battery. In this paper we mainly review a recent progress on various models for predicting RUL of battery with high accuracy satisfying the given confidence interval level. Moreover, performance evaluation metrics for battery prognostics are presented in detail to show the strength of these metrics compared to the traditional ones used in the existing forecasting applications.

Development and Performance Test of Ka-Band Pulsed Doppler Radar System for Road Obstacle Warning (도로 장애물 경보를 위한 Ka-대역 펄스 도플러 레이다 시스템 개발 및 성능시험)

  • Jung, Jung-Soo;Seo, Young-Ho;Kwag, Young-Kil
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.1
    • /
    • pp.99-107
    • /
    • 2014
  • Abruptly occurred obstacles on highway threaten driving safety. Radar draws the attention to the collision avoidance system because it can be fully operational in all weather, and day and night condition. This paper presents the design, implementation and performance test results of pulsed Doppler radar system for detection and warning of road obstacles. The system is designed to consider highway environment and detection capability about various fixed and moving obstacles. The system consists of 4 subsystems, which include antenna unit, transmitter and receiver unit, radar signal & data processing unit, and controller & display unit. The core technologies include clutter map based change detection for fixed obstacles detection, Doppler estimation for velocity detection of moving targets, and azimuth angle estimation method using monopulse for lane estimation and tracking. The design performance of the developed radar system is verified through experiments using a fixed reference target and moving vehicles in test highway.

Structural evaluation of an existing steel natatorium by FEM and dynamic measurement

  • Liu, Wei;Gao, Wei-Cheng;Sun, Yi;Yu, Yan-Lei
    • Structural Engineering and Mechanics
    • /
    • v.31 no.5
    • /
    • pp.507-526
    • /
    • 2009
  • Based on numerical and experimental methods, a systematic structural evaluation of a steel natatorium in service was carried out in detail in this paper. Planning of inspection tasks was proposed firstly according to some national codes in China in order to obtain the economic and reliable results. The field visual inspections and static computation were conducted in turn under in-service environmental conditions. Further a three-dimensional finite element model was developed according to its factual geometry properties obtained from the field inspection. An analytical modal analysis was performed to provide the analytical modal properties. The field vibration tests on the natatorium were conducted and then two different system identification methods were used to obtain the dynamic characteristics of the natatorium. A good correlation was achieved in results obtained from the two system identification methods and the finite element method (FEM). The numerical and experimental results demonstrated that the main structure of the natatorium in its present status is safe and it still satisfies the demand of the national codes in China. But the roof system such as purlines and skeletons must be removed and rebuilt completely. Moreover the system identification results showed that field vibration test is sufficient to identify the reliable dynamic properties of the natatorium. The constructive suggestion on structural evaluation of the natatorium is that periodic assessment work must be maintained to ensure the natatorium's safety in the future.

Radiation-induced transformation of Hafnium composition

  • Ulybkin, Alexander;Rybka, Alexander;Kovtun, Konstantin;Kutny, Vladimir;Voyevodin, Victor;Pudov, Alexey;Azhazha, Roman
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.1964-1969
    • /
    • 2019
  • The safety and efficiency of nuclear reactors largely depend on the monitoring and control of nuclear radiation. Due to the unique nuclear-physical characteristics, Hf is one of the most promising materials for the manufacturing of the control rods and the emitters of neutron detectors. It is proposed to use the Compton neutron detector with the emitter made of Hf in the In-core Instrumentation System (ICIS) for monitoring the neutron field. The main advantages of such a detector in comparison the conventional β-emission sensors are the possibility of reaching of a higher cumulative radiation dose and the absence of signal delays. The response time of the detection is extremely important when a nuclear reactor is operating near its critical operational parameters. Taking Hf as an example, the general principles for calculating the chains of materials transformation under neutron irradiation are reported. The influence of 179m1Hf on the Hf composition changing dynamics and the process of transmutants' (Ta, W) generation were determined. The effect of these processes on the absorbing properties of Hf, which inevitably predetermine the lifetime of the detector and its ability to generate a signal, is estimated.

Using AHP to Develop a Rehabilitation Room Management Model for Fire Officers at Disaster Sites (재난현장 소방공무원의 회복실 운영모델 개발)

  • Yim, Dong-Kyun;Chae, Jin
    • Fire Science and Engineering
    • /
    • v.34 no.4
    • /
    • pp.115-124
    • /
    • 2020
  • The purpose of this study was to provide an operational model of the rehabilitation room for fire officers at disaster sites to improve the safety and resilience of fire officers. Therefore, we analyzed the operation related elements of the rehabilitation room-such as overseas rehabilitation room operation cases and previous studies- and managed different factors including, but not limited to, management and human resources, equipment and facility, and accessibility and convenience factors; afterward, the relative importance and importance of sub-layers in each field were measured. The priority of items for the operation of the rehabilitation room for fire officers at disaster sites was elucidated; after expert analysis, it was found that human resources were the most crucial factor. Finally, it was found that, in descending order, accessibility and convenience, administrative, equipment, and facility factors were also essential. Based on this, we proposed a rehabilitation room operation guideline for disaster sites.

Spatial Patterns of Methane Oxidation and Methanotrophic Diversity in Landfill Cover Soils of Southern China

  • Chi, Zi-Fang;Lu, Wen-Jing;Wang, Hong-Tao
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.4
    • /
    • pp.423-430
    • /
    • 2015
  • Aerobic CH4 oxidation is an important CH4 sink in landfills. To investigate the distribution and community diversity of methanotrophs and link with soil characteristics and operational parameters (e.g., concentrations of O2, CH4), cover soil samples were collected at different locations and depths from the Mengzi semi-aerobic landfill (SAL) in Yunnan Province of southern China. Specific PCR followed by denaturing gradient gel electrophoresis and realtime PCR were used to examine methanotrophs in the landfill cover soils. The results showed that different locations did harbor distinct methanotroph communities. Methanotrophs were more abundant in areas near the venting pipes because of the higher O2 concentrations. The depth of 20-25 cm, where the ratio of the CH4 to O2 was within the range from 1.3 to 8.6, was more conducive to the growth of CH4-oxidizing bacteria. Type II methanotrophs dominated in all samples compared with Type I methanotrophs, as evidenced by the high ratio of Type II to Type I methanotrophic copy numbers (from 1.76 to 11.60). The total copy numbers of methanotrophs detected were similar to other ecosystems, although the CH4 concentration was much higher in SAL cover soil. Methylobacter and Methylocystis were the most abundant Type I and Type II methanotrophs genera, respectively, in the Mengzi SAL. The results suggested that SALs could provide a special environment with both high concentrations of CH4 and O2 for methanotrophs, especially around the vertical venting pipes.

An Efficient Chloride Ingress Model for Long-Term Lifetime Assessment of Reinforced Concrete Structures Under Realistic Climate and Exposure Conditions

  • Nguyen, Phu Tho;Bastidas-Arteaga, Emilio;Amiri, Ouali;Soueidy, Charbel-Pierre El
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.199-213
    • /
    • 2017
  • Chloride penetration is among the main causes of corrosion initiation in reinforced concrete (RC) structures producing premature degradations. Weather and exposure conditions directly affect chloride ingress mechanisms and therefore the operational service life and safety of RC structures. Consequently, comprehensive chloride ingress models are useful tools to estimate corrosion initiation risks and minimize maintenance costs for RC structures placed under chloride-contaminated environments. This paper first presents a coupled thermo-hydro-chemical model for predicting chloride penetration into concrete that accounts for realistic weather conditions. This complete numerical model takes into account multiple factors affecting chloride ingress such as diffusion, convection, chloride binding, ionic interaction, and concrete aging. Since the complete model could be computationally expensive for long-term assessment, this study also proposes model simplifications in order to reduce the computational cost. Long-term chloride assessments of complete and reduced models are compared for three locations in France (Brest, Strasbourg and Nice) characterized by different weather and exposure conditions (tidal zone, de-icing salts and salt spray). The comparative study indicates that the reduced model is computationally efficient and accurate for long-term chloride ingress modeling in comparison to the complete one. Given that long-term assessment requires larger climate databases, this research also studies how climate models may affect chloride ingress assessment. The results indicate that the selection of climate models as well as the considered training periods introduce significant errors for mid- and long- term chloride ingress assessment.

A Study on the Crashworthiness Design of Bow Structure of Oil Carriers (유조선 선수부의 내충돌 구조설계에 관한 연구)

  • 신영식;박명규
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.119-126
    • /
    • 2001
  • The potential pollution problems resulting from tanker collision necessitate the requirement for an effective structural design and the development of relevant safety regulation. During a few decades, the great effort has been made by International Maritime Organization and the Administration, etc, to reduce oil spillage from collision accidents. However there is still a need for investigation in the light of structural evaluation method for the experiments and rational analysis, and design development for an operational purpose of ships. This study is aimed at investigating a complicated structural response of bow structures of oil carriers for assessing the energy dissipation and crushing mechanics of striking vessel through a methodology of the numerical analysts for the various models and its design changes. Through this study an optimal bow construction absorbing great portion of kinetic energy in the least penetration depth prior to reach to the cargo area and an effective location of collision bulkhead are investigated. In order to obtain a rational results in this study, three stages of response analysis procedures are performed as follows; 1). 16 simplified ship models are used to investigate the structural response against bow collision with variation of primary and secondary members. Mass and speed are also varied in two conditions. 2). 21 models conisted of 5 size of full scaled oil carriers are used to perform the collision simulation with the various sizes and deadweight delivered in a recent which are complied with SOLAS and MARPOL. 3). 36 models of 100k oil carrier are used to investigate the structural response and its influence to the collision bulkhead against bow collision in variation with location of collision bulkhead, primary mombers, framing system and colliding conditions, etc.

  • PDF