• Title/Summary/Keyword: operational safety

Search Result 964, Processing Time 0.022 seconds

A Study on Ground Risk and Mitigation in the SORA Methodology (무인항공기 SORA 위험평가를 위한 지상위험도 및 완화수단 분석)

  • Kwon, Taehwa;Chang, Sewon;Jeon, Seungmok
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.3
    • /
    • pp.52-62
    • /
    • 2022
  • In the SORA methodology developed for the operational risk assessment of a specific category of operation of a UAS, the ground and the air risk levels are determined, and a SAIL indicating the level of assurance and integrity for the corresponding risk is assigned, and accordingly, the operational safety level for the proposed operation. Objectives should be demonstrated at an appropriate level of robustness. Because of the nature of the specific category of operation, people on the ground are the first risk subjects to be considered. The resulting ground risk class plays an important role in the allocation of SAIL. In this paper, the impact on SAIL and OSO according to the final risk level and the reduction of the level through the determination of the ground risk level and the application of mitigation measures among risk assessments for specific categories of UAV operation was investigated.

Radiological safety analysis of a newly designed spent resin mixture treatment facility during normal and abnormal operational scenarios for the safety of radiation workers

  • Jaehoon Byun;Seungbin Yoon;Hee Reyoung Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1935-1945
    • /
    • 2023
  • The radiological safety of workers in a newly developed microwave-based spent resin treatment facility was assessed based on work location and operational scenarios. The results show that the remote-operation room worker was exposed to maximum annual dose of 3.19E+00 mSv, which is 15.9% of the dose limit, thereby confirming radiological safety. Inside the pathway, annual doses in the range of 7.87E-02-2.07E-01 mSv were measured initially at the mock-up tank and later at the point between the spent resin separation and treatment parts. The dose of emergency maintenance workers was below the dose limit (4.08E-03-4.99E+00 mSv); however, before treatment (separation and microwave), the dose of maintenance and repair workers exceeded the dose limit. The doses of the effluent removal workers at the zeolite and activated carbon storage tank and spent resin storage tank were the lowest at 2.79E-01-2.87E-01 mSv and 9.27E-01 mSv in "1 h" and "4-5 h of operation", respectively. The immediately lower and upper layers of the facility room exhibited the highest annual doses of 1.84E+00 and 3.22E+00 mSv, respectively. Through this study, a scenario that can minimize the dose considering the movement of spent resin through the facility can be developed.

study of standardization on the rollingstock's operational control box (철도차량 운전실제어대 설계기준 마련 연구)

  • Lhim, Jea-Eun;Jung, Do-Won;Kim, Chi-Tae
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2139-2144
    • /
    • 2008
  • There are eight kinds of railroad vehicles such as KTX, PP(Push-Pull), NEL(New Electric Locomotive), EL(Electric Locomotive), DL(Diesel Locomotive), CDC(Commuter's Diesel Car), VVVF(Variable Voltage Variable Frequency) and Resistance Control Car that Korail corporation presently runs, and a variety of vehicles just like EMU(Electric Multiple Unit) and DMU(Diesel Multiple Unit) currently developed and accepted are running in the near future. However, There is still no design standard of the control stand of cockpit and the same compatibility of forms and control unit arrangements for locomotive engineers because no one has tried to approach in an ergonomic way. It can cause Locomotive engineers to make errors using the machinery. when the new vehicles are adopted, The efficiency of operation will quite fall down due to the separate training of the engineers. Therefore, We'd like to improve the accuracy of manipulating the machinery used by the engineers at all times according to the design standard of ergonomic technology and safety engineering and increase the operational efficiency and the safety of railroad vehicles in order to handle the problems as quickly as we can in an emergent situation.

  • PDF

Vital area identification for the physical protection of NPPs in low-power and shutdown operations

  • Kwak, Myung Woong;Jung, Woo Sik
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2888-2898
    • /
    • 2021
  • Vital area identification (VAI) is an essential procedure for the design of physical protection systems (PPSs) for nuclear power plants (NPPs). The purpose of PPS design is to protect vital areas. VAI has been improved continuously to overcome the shortcomings of previous VAI generations. In first-generation VAI, a sabotage fault tree was developed directly without reusing probabilistic safety assessment (PSA) results or information. In second-generation VAI, VAI model was constructed from all PSA event trees and fault trees. While in third-generation VAI, it was developed from the simplified PSA event trees and fault trees. While VAIs have been performed for NPPs in full-power operations, VAI for NPPs in low-power and shutdown (LPSD) operations has not been studied and performed, even though NPPs in LPSD operations are very vulnerable to sabotage due to the very crowded nature of NPP maintenance. This study is the first to research and apply VAI to LPSD operation of NPP. Here, the third-generation VAI method for full-power operation of NPP was adapted to the VAI of LPSD operation. In this study, LPSD VAI for a few plant operational states (POSs) was performed. Furthermore, the operation strategy of vital areas for both full-power and LPSD operations was discussed. The LPSD VAI method discussed in this paper can be easily applied to all POSs. The method and insights in this study can be important for future LPSD VAI that reflects various LPSD operational states. Regulatory bodies and electric utilities can take advantage of this LPSD VAI method.

Event Type and Severity Priority Survey of Airline Flight Operation Quality Assurance(FOQA) Program (운항품질보증프로그램 이벤트 유형 및 심각도 우선순위 조사)

  • Kim, Jin Ho;Lee, Sang Gee;Moon, Woo Choon;Jeong, Hyun Jin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.3
    • /
    • pp.84-99
    • /
    • 2021
  • Flight data from operational quality assurance programs plays a significant role in identifying factors as one of the key data in the development of proactive and preventive aviation safety management technologies based on data. The list of events in the flight quality assurance program recommended by the FAA differs from the list set and managed by airlines themselves and is based on the frequency of occurrence rather than the severity of individual events. In this work, we compared the list of FOQA events presented by the FAA with the list of some domestic airlines. We also investigate the severity priorities of events for airline captains and conduct research on how to improve the operation of the operational quality assurance program.

Effects of house load operation on PSA based on operational experiences in Korea

  • Lim, Hak Kyu;Park, Jong-hoon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2812-2820
    • /
    • 2020
  • House load operation (HLO) occurs when the generator supplies power to the house load without triggering reactor trips during grid disturbances. In Korea, the HLO capability of optimized power reactor 1000 (OPR1000) plants has prevented several reactor trips. Operational experiences demonstrate the difference in the reactor trip incidence due to grid disturbances between OPR1000 plants and Westinghouse plants in Korea, attributable to the availability of the HLO capability. However, probabilistic safety assessments (PSAs) for OPR1000 plants have not considered their specific design features in the initiating event analyses. In an at-power PSA, the HLO capability can affect the initiating event frequencies of general transients (GTRN) and loss of offsite power (LOOP), resulting from transients within the grid system. The initiating event frequencies of GTRN and LOOP for an OPR1000 plant are reduced by 17.7% and 78.7%, respectively, compared to the Korean industry-average initiating event frequencies, and its core damage frequency from internal events is reduced by 15.2%. The explicit consideration of the HLO capability in initiating event analyses makes significant changes in the risk contributions of the initiating events. Consequently, for more realistic at-power PSAs in Korea, we recommend incorporating plant-specific HLO-related design features when estimating initiating event frequencies.

A Study on the Prevention Measures of Human Error with Railway Drivers (열차 운전 종사자를 대상으로 한 인적오류의 개선 방안 연구)

  • Kim, Dong Won;Song, Bo Young;Lee, Hi Sung
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.1
    • /
    • pp.76-81
    • /
    • 2019
  • In this study, the causes of human error were identified through the survey of the drivers of the three organizations: Seoul Metro, Seoul Metropolitan Rapid Transit Corporation, and Korail. It was started with the aim of finding and eliciting causes in various directions including human factors, job factors, and environmental factors. The Cronbach alpha value was 0.95 for the reliability significance of the stress-induced factors in the operational area. The significance probability for organisational factors was shown to be 0.82, and the significance of the sub-accident experience and the driving skill factors in operation was 0.81 In addition, the analysis results showed that stress-induced in the field of driving is higher than the human factors in the reliability analysis. The results of the analysis confirmed that the reliability of the organizational and operational stress-induced factors was higher than other causes. In order to reduce urban railroad accidents, this paper suggests a method for operating safe urban railroad through the minimization human errors.

Analysis of steam generator tube rupture accidents for the development of mitigation strategies

  • Bang, Jungjin;Choi, Gi Hyeon;Jerng, Dong-Wook;Bae, Sung-Won;Jang, Sunghyon;Ha, Sang Jun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.152-161
    • /
    • 2022
  • We analyzed mitigation strategies for steam generator tube rupture (SGTR) accidents using MARS code under both full-power and low-power and shutdown (LPSD) conditions. In general, there are two approaches to mitigating SGTR accidents: supplementing the reactor coolant inventory using safety injection systems and depressurizing the reactor coolant system (RCS) by cooling it down using the intact steam generator. These mitigation strategies were compared from the viewpoint of break flow from the ruptured steam generator tube, the core integrity, and the possibility of the main steam safety valves opening, which is associated with the potential release of radiation. The "cooldown strategy" is recommended for break flow control, whereas the "RCS make-up strategy" is better for RCS inventory control. Under full power, neither mitigation strategy made a significant difference except for on the break flow while, in LPSD modes, the RCS cooldown strategy resulted in lower break and discharge flows, and thus less radiation release. As a result, using the cooldown strategy for an SGTR under LPSD conditions is recommended. These results can be used as a fundamental guide for mitigation strategies for SGTR accidents according to the operational mode.

Transport Risk Assessment for On-Road/Sea Transport of Decommissioning Waste of Kori Unit 1

  • Woo Yong Kim;Hyun Woo Song;Jisoo Yoon;Moon Oh Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.2
    • /
    • pp.255-269
    • /
    • 2023
  • Compared to operational wastes, nuclear power plant (NPP) decommissioning wastes are generated in larger quantities within a short time and include diverse types with a wider range of radiation characteristics. Currently used 200 L drums and IP-2 type transport containers are inefficient and restrictive in packaging and transporting decommissioning wastes. Therefore, new packaging and transport containers with greater size, loading weight, and shielding performance have been developed. When transporting radioactive materials, radiological safety should be assessed by reflecting parameters such as the type and quantity of the package, transport route, and transport environment. Thus far, safety evaluations of radioactive waste transport have mainly targeted operational wastes, that have less radioactivity and a smaller amount per transport than decommissioning wastes. Therefore, in this study, the possible radiation effects during the transport from NPP to disposal facilities were evaluated to reflect the characteristics of the newly developed containers and decommissioning wastes. According to the evaluation results, the exposure dose to transport workers, handling workers, and the public was lower than the domestic regulatory limit. In addition, all exposure dose results were confirmed, through sensitivity analysis, to satisfy the evaluation criteria even under circumstances when radioactive materials were released 100% from the container.

Discussion on Establishing UAM Operating Concept from the Pilot's Perspective (조종사 관점에서 UAM 운영개념 수립에 대한 고찰)

  • Hi-seok Yoon;Keun-young Lee;Kyu-wang Kim
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.32 no.1
    • /
    • pp.39-48
    • /
    • 2024
  • Aviation industry is moving towards the third innovative era of AAM with electric power and AI after the JET-powered era following the Wright brothers' first flights. Research on UAM, eVTOL development, certification, and operations is competitively progressing, primarily in aviation-leading countries, aiming to resolve urban traffic saturation and foster the future aviation industries. This study introduces the concept of the pilot's role transition in operational safety as AI autonomous flight advances, comparing K-UAM operational concept with research from FAA, NASA, and EASA. It is to identify and propose solutions for challenges from the pilot's perspective in developing UAM and its safe operation system. To succeed in Advanced Air Mobility National Project, we suggest the collaboration among industry, academia, and institutions, along with the cooperation between civilians, governments, military, and the need for Urban Air Mobility integrated policies.