• Title/Summary/Keyword: operational remote sensing

Search Result 147, Processing Time 0.025 seconds

Monitoring on Crop Condition using Remote Sensing and Model (원격탐사와 모델을 이용한 작황 모니터링)

  • Lee, Kyung-do;Park, Chan-won;Na, Sang-il;Jung, Myung-Pyo;Kim, Junhwan
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_2
    • /
    • pp.617-620
    • /
    • 2017
  • The periodic monitoring of crop conditions and timely estimation of crop yield are of great importance for supporting agricultural decision-makings, as well as for effectively coping with food security issues. Remote sensing has been regarded as one of effective tools for crop condition monitoring and crop type classification. Since 2010, RDA (Rural Development Administration) has been developing technology for monitoring on crop condition using remote sensing and model. These special papers address recent state-of-the-art of remote sensing and geospatial technologies for providing operational agricultural information, such as, crop yield estimation methods using remote sensing data and process-oriented model, crop classification algorithm, monitoring and prediction of weather and climate based on remote sensing data,system design and architecture of crop monitoring system, history on rice yield forecasting method.

Vibration-based structural health monitoring of stay cables by microwave remote sensing

  • Gentile, Carmelo;Cabboi, Alessandro
    • Smart Structures and Systems
    • /
    • v.16 no.2
    • /
    • pp.263-280
    • /
    • 2015
  • Microwave remote sensing is probably the most recent experimental technique suitable to the non-contact measurement of deflections on large structures, in static or dynamic conditions. In the first part of the paper, the main techniques adopted in microwave remote sensing are described, so that advantages and potential issues of these techniques are presented and discussed. Subsequently, the paper addresses the application of the radar technology to the measurement of the vibration response on the stay cables of two cable-stayed bridges. The dynamic tests were performed in operational conditions (i.e. with the excitation being mainly provided by micro-tremors, wind and traffic) and the maximum deflections of the cables were generally lower than 5.0 mm. The investigation clearly highlights: (a) the safe and simple use of the radar on site and its effectiveness to simultaneously measure the dynamic response of all the stay cables of an array; (b) the negligible effects of the typical issues and uncertainties that might affect the radar measurements; (c) the accuracy of the results provided by the microwave remote sensing in terms of natural frequencies and tension forces of the stay cables; (d) the suitability of microwave interferometry to the repeated application within Structural Health Monitoring programmes.

Development of Aerosol Retrieval Algorithm Over Ocean Using FY-1C/1D Data

  • Xiuqing, Hu;Naimeng, Lu;Hong, Qiu
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1255-1257
    • /
    • 2003
  • This study proposes a single-channel satellite remote sensing algorithm for retrieving aerosol optical thickness over global ocean using FY-1C/1D data. An efficient lookup table (LUT)method is adopted in this algorithm to generate apparent reflectance in channel 1 and channel 2 of FY-1C/1D over ocean. The algorithm scale the apparent reflectance in cloud-free conditions to aerosol optical thickness using a state-of-art radiative transfer model 6S with input of the relative spectral response of channel 1 and 2 of FY-1C/1D. Monthly mean composite maps of the aerosol optical thickness have been obtained from FY-1C/1D global area coverage data between 2001 and 2003. Aerosol optical thickness maps can show the major aerosol source which are located off the west coast of northern and southern Africa, Arabian Sea and India Ocean. These result is very similar to other satellite sensors such as AVHRR and MODIS in the location area of heavy aerosol optical thickness over global ocean. The algorithm have been used to FY-1D operational performance and it is the first operational aerosol remote sensing product in China.

  • PDF

The Horizontal Wind and Vertical Motion Field Derived from the NOAA Polar Orbiting Satellites

  • Lee, Dong-Kyou
    • Korean Journal of Remote Sensing
    • /
    • v.4 no.1
    • /
    • pp.41-47
    • /
    • 1988
  • The operational NOAA satellite temperature soundings are utilized to determine the horizontal wind and vertical motion fields for a polar low case over the East Asian region by solving the nonlinear balance equation and the omega equation. Preliminary results demonstrate that the balanced wind and vertical motion fields derived from the satellite data give reasonable synoptic patterns associated with the polar low. This encourages the use of satellite information as inputs in the numerical weather prediction models.

SWIR/VIS Reflectance Ratio Over Korea for Aerosol Retrieval

  • Lee, Kwon-Ho;Li, Zhangqing;Kim, Young-Joon
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.1
    • /
    • pp.1-5
    • /
    • 2007
  • Relatively simplified method for determination of surface reflectance has been used by using the ratio between SWIR and VIS band reflectance over land surface. The surface reflectance ratios (SWIR/VIS) were estimated over land in Korea from Terra Moderate Resolution Imaging Spectre-radiometer (MODIS) L1 data. The ratios by using the minimum reflectance technique were lower than those by MODIS operational aerosol retrieval algorithm. Although the comparison between MODIS and sunphotometer Aerosol Optical Thickness (AOT) has a good correlation coefficient (R=0.84), slightly overestimated MODIS AOTs were shown with a slope of linear regression line of 0.89. The comparison between the ratio and AOT dearly exhibit that the error of MODIS AOT could be originated from the underestimated surface reflectances by MODIS operational algorithm.

Water Quality Management System at Mok-hyun Stream Watershed Using RS and GIS

  • Lee, In-Soo;Lee, Kyoo-seock
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.63-69
    • /
    • 1999
  • The purpose of this study is to develop Water Quality Management System(WQMS), which performs calculating pollutant discharge and forecasting water quality with water pollution model. Operational water quality management requires not only controlling pollutants but acquiring and managing exact information. A GIS software, ArcView was used to enter or edit geographic data and attribute data, and MapObject was used to customize the user interface. PCI, a remote sensing software, was used for deriving land cover classification from 20 m resolution SPOT data by image processing. WQMS has two subsystems, Database Subsystem and Modelling subsystem. Database subsystem consisted of watershed data from digital map, remote sensing data, government reports, census data and so on. Modelling subsystem consisted of NSPLM(NonStorm Pollutant Load Model)-SPLM(Storm Pollutant Load Model). It calculates the amount of pollutant and predicts water quality. This two subsystem was connected through graphic display module. This system has been calibrated and verified by applying to Mokhyun stream watershed.

  • PDF

Current Status of Hyperspectral Remote Sensing: Principle, Data Processing Techniques, and Applications (초분광 원격탐사의 특성, 처리기법 및 활용 현용)

  • Kim Sun-Hwa;Ma Jung-Rim;Kook Min-Jung;Lee Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.4
    • /
    • pp.341-369
    • /
    • 2005
  • Hyperspectral images have emerged as a new and promising remote sensing data that can overcome the limitations of existing optical image data. This study was designed to provide a comprehensive review on definition, data processing methods, and applications of hyperspectral data. Various types of airborne, spaceborne, and field hyperspectral image sensors were surveyed from the available literatures and internet search. To understand the current status of hyperspectral remote sensing technology and research development, we collected several hundreds research papers from international journals (IEEE Transactions on Geoscience and Remote Sensing, International Journal of Remote Sensing, Remote Sensing of Environment and AVIRIS Workshop Proceedings), and categorized them by sensor types, data processing techniques, and applications. Although several hyperspectral sensors have been developing, AVIRIS has been a primary data source that the most hyperspectral remote sensing researches were relied on. Since hyperspectral data have very large data volume with many spectral bands, several data processing techniques that are particularly oriented to hyperspectral data have been developed. Although atmospheric correction, spectral mixture analysis, and spectral feature extraction are among those processing techniques, they are still in experimental stage and need further refinement until the fully operational adaptation. Geology and mineral exploration were major application in early stage of hyperspectral sensing because of the distinct spectral features of rock and minerals that could be easily observed with hyperspectral data. The applications of hyperspectral sensing have been expanding to vegetation, water resources, and military areas where the multispectral sensing was not very effective to extract necessary information.

Airborne Video as a Remote Sensor for Linear Target : Academic Research and Field Practices (선형지상물체에 대한 원격센서로서의 항공비디오 : 연구추세 및 실무에서 사용현황)

  • 엄정섭
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.2
    • /
    • pp.159-174
    • /
    • 1999
  • An important aspect of remote sensing research would be ultimately the production of research output so that operational people can directly use it. However, for the strip target, it is not certain how the research output in remote sensing helps the field user in adopting and utilizing the technology successfully. The relative limitation of traditional remote sensing systems for such a linear application is briefly discussed and the strength of videography are highlighted. Based on the postulated advantages of video as corridor sensor, a careful and extensive investigation has been made of research trends for airborne videography to identify how past research matches to demand of field clients. It is found that while video has been operationally used for strip target in field client communities, much research effort has been directed to area target, and relatively little towards the classification and monitoring of linear target. From this critical review, a very important step has been made concerning the practicality of airborne videography. The value of this paper is warranted in proposing a new concept of video strip monitoring(VSM) as future research direction in recognition of sensor characteristics and limitations. Ultimately, the suggestion in this paper will greatly contribute to opening new possibilities for implementing VSM, proposed as an initial aim of this paper.

Retrieval of satellite cloud drift winds with GMS-5 and inter comparison with radiosonde data over the Korea

  • Suh, Ae-Sook;Lee, Yong-Seob;Ryu, Seung-Ah
    • Proceedings of the KSRS Conference
    • /
    • 2000.04a
    • /
    • pp.49-54
    • /
    • 2000
  • Conventional methods for measuring winds provide wind velocity observations over limited area and time period. The use of satellite imagery for measuring wind velocity overcomes some of these limitations by providing wide area and near condinuous coverage. And its accurate depiction is essential for operational weather forecasting and for initialization of NWP models. GMS-5 provides full disk images at hourly intervals. At four times each day - 0500, 1100, 1700, 2300 hours UTC-a series of three images is received, separated by thirty minutes, centered at the four times. The current wind system generates winds from sets of 3 infrared(IR) images, separated by an hour, four times a day. It also produces visible(VIS) and water vapor(WV) image-based winds from half-hourly imagery four times a day. The derivation of wind from satellite imagery involves the identification of suitable cloud targets. tracking the targets on sequential images, associating a pressure height with the derived wind vector, and quality control. The aim of this research is to incorporate imagery from other available spectral channels and examine the error characteristics of winds derived from these images.

  • PDF

Testing Implementation of Remote Sensing Image Analysis Processing Service on OpenStack of Open Source Cloud Platform (오픈소스 클라우드 플랫폼 OpenStack 기반 위성영상분석처리 서비스 시험구현)

  • Kang, Sang-Goo;Lee, Ki-Won
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.4
    • /
    • pp.141-152
    • /
    • 2013
  • The applications and concerned technologies of cloud computing services, one of major trends in the information communication technology, are widely progressing and advancing. OpenStack, one of open source cloud computing platforms, is comprised of several service components; using these, it can be possible to build public or private cloud computing service for a given target application. In this study, a remote sensing image analysis processing service on cloud computing environment has designed and implemented as an operational test application in the private cloud computing environment based on OpenStack. The implemented service is divided into instance server, web service, and mobile app. A instance server provides remote sensing image processing and database functions, and the web service works for storage and management of remote sensing image from user sides. The mobile app provides functions for remote sensing images visualization and some requests.