• Title/Summary/Keyword: operational environmental characteristics

Search Result 182, Processing Time 0.029 seconds

Structural modeling of actuation of IPMC in dry environment: effect of water content and activity

  • Swarrup, J. Sakthi;Ranjan, Ganguli;Giridhar, Madras
    • Smart Structures and Systems
    • /
    • v.19 no.5
    • /
    • pp.553-565
    • /
    • 2017
  • Structural modeling of unencapsulated ionic polymer metal composite (u-IPMC) actuators that are used for flapping the insect scale-flapping wing of micro air vehicles (FMAV) in dry environmental conditions is carried out. Structural modeling for optimization of design parameters for retention of water, maximize actuation performance and to study the influence of water activity on the actuation characteristics of u-IPMC is explored for use in FMAV. The influence of equivalent weight of Nafion polymer, cations, concentration of cations, pre-treatment procedures on retention of water of u-IPMCs and on actuation parameters, flapping angle, flexural stiffness and actuation displacement are investigated. IPMC designed with Nafion having equivalent weight 900-1100, pre-heated at $30^{\circ}C$ and with sodium as the cations is promising for optimum retention of water and actuation performance. The actuation parameters while in operation in dry and humid environment with varying water activity can be tuned to desirable frequency, deflection, flap angle and flexural stiffness by changing the water activity and operational temperature of the environment.

Research and Development Trend of Pertraction Process using Membrane (분리막을 이용한 투과추출공정의 연구와 개발 동향)

  • Kim, Deuk Ju;Choi, Whee Moon;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.22 no.6
    • /
    • pp.381-394
    • /
    • 2012
  • Recently, a variety of chemical and physical methods are employed to separate ionic materials from complex aqueous. Most of all, membrane pertraction using contactor has been considered as alternative recovery and separation system in field of chemical, petrochemical and medicines because heavy metals, hydrocarbon based materials in contaminants like wastewater can be recovered by pertraction system. Also, pertraction process has characteristics such as ease of operation, lower energy consumption and operational cost, higher selectivity. This work investigates some example of developed membrane and their performance for the application of pertraction process.

Characteristics of spatial distribution of cold cathode type large aperture electron beam (냉음극형 대면적 전자빔의 공간적 분포 특성)

  • Woo, S.H.;Abroyan, M.;Cho, C.H.;Kim, G.H.;Lee, H.S.;Rim, G.H.;Lee, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2170-2172
    • /
    • 1999
  • A low energy large aperture(LELA) pulsed electron beam generator of a cold cathode type has been developed for environmental applications, for example, waste water cleaning, flue gas cleaning, and pasteurization etc. The operational principle is based on the emission of secondary electrons from cold cathode when ions in the plasma hit the cathode, which are accelerated toward exit window by the gradient of an electric potential. We have fabricated the LELA electron beam generator with the peak energy of 200keV and beam diameter of 200mm and obtained the large aperture electron beam in air. The electron beam current density has been investigated as a function of glow discharge current, accelerating voltage and radial distribution in front of the exit window foil. The plasma density and electron temperature have been measured in order to confirm the relation with the electron beam current density. We are going to upgrade the LELA electron beam generator in the electron energy, electron beam current and stability of operation for various applications.

  • PDF

An ionization Chamber for a Steel Sheet Thickness Measurement

  • Kim, Han-Soo;Park, Se-Hwa;Kim, Yong-Kyun;Ha, Jang-Ho;Cho, Seung-Yeon
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.3
    • /
    • pp.149-153
    • /
    • 2006
  • An ionization chamber is still widely used in many fields by virtue of its' simple operational characteristics and the possibility of its' various shapes. A parallel type of an ionization chamber for a steel sheet thickness measurement was designed and fabricated. High pure xenon gas, which was pressurized up to 6 atm, was chosen as a filling gas to increase the current response and sensitivity for a radiation. A high pressure gas system was also constructed. The active volume and the incident window size of the fabricated ionization chamber were $30\;cm^3\;and\;12\;cm^2$, respectively. Preliminary tests with a 25 mCi $^{241}Am$ gamma-ray source and evaluation tests in a standard X-ray field were performed. The optimal operation voltage was set from the results of the collection efficiency calculation by using an experimental two-voltage method. Linearity for a variation of the steel sheet thickness, which is the most important factor for an application during a steel sheet thickness measurement, was 0.989 in this study.

Development of a Novel Bioreactor System for the Treatment of Gaseous Benzene

  • Yeom, Sung-Ho;Daugulis, Andrew J.;Yoo, Young-Je
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.73-76
    • /
    • 2000
  • A novel, continuous bioreactor system combining a bubble column (absorption section) and a two-phase bioreactor (degradation section) has been designed to treat a gas stream containing benzene. The bubble column contained hexadecane as an absorbent for benzene, and was systemically chosen considering physical, biological, environmental, operational and economic factors. This solvent has infinite solubility for benzene and very low volatility. After absorbing benzene in the bubble column, the hexadecane served as the organic phase of the two-phase partitioning bioreactor, transferring benzene into the aqueous phase where it was degraded by Alcaligenes xylosoxidans Y234. The hexadecane was then continuously recirculated back to the absorber section for the removal of additional benzene. All mass transfer and biodegradation characteristics in this system were investigated prior to operation of the integrated unit, and these included: the mass transfer rate of benzene in the absorption column, the mass transfer rate of benzene from the organic phase into the aqueous phase in the two-phase bioreactor, the stripping rate of benzene out of the two-phase bioreactor, etc. All of these parameters were incorporated into model equations, which were used to investigate the effects of operating conditions on the performance of the system. Several experiments were conducted to show the feasibility of this system. This process is believed to be very practical for the treatment of high concentrations of gaseous pollutants.

  • PDF

A novel approach for optimal DG allocation in distribution network for minimizing voltage sag

  • Hashemian, Pejman;Nematollahi, Amin Foroughi;Vahidi, Behrooz
    • Advances in Energy Research
    • /
    • v.6 no.1
    • /
    • pp.55-73
    • /
    • 2019
  • The cost incurred by voltage sag effect in power networks has always been of important concern for discussions. Due to the environmental constraints, fossil fuel shortage crisis and low efficiency of conventional power plants, decentralized generation and renewable based DG have become trends in recent decades; because DGs can reduce the voltage sag effect in distribution networks noticeably; therefore, optimum allocation of DGs in order to maximize their effectiveness is highly important in order to maximize their effectiveness. In this paper, a new method is proposed for calculating the cost incurred by voltage sag effect in power networks. Thus, a new objective function is provided that comprehends technical standards as minimization of the cost incurred by voltage sag effect, active power losses and economic criterion as the installation and maintenance costs of DGs. Considering operational constraints of the system, the optimum allocation of DGs is a constrained optimization problem in which Lightning Attachment procedure optimization (LAPO) is used to resolve it and is the optimum number, size and location of DGs are determined in IEEE 33 bus test system and IEEE 34 bus test system. The results show that optimum allocation of DGs not only reduces the cost incurred by voltage sag effect, but also improves the other characteristics of the system.

Preparation of Financial Statements of Enterprises According to IFRS: An Empirical Study from Vietnam

  • NGUYEN, Duy Thuc;HOANG, Dinh Huong;NGUYEN, Ngoc Tien
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.2
    • /
    • pp.193-207
    • /
    • 2022
  • The purpose of this study was to find out what factors influence the preparation of financial statements in accordance with the International Financial Reporting Standards (IFRS) for Vietnamese businesses. The survey included 150 enterprises, including parent companies of state-owned economic groups, parent companies that are listed companies, large-scale public companies that are unlisted parent companies, and enterprises with 100 percent foreign direct investment, that will apply IFRS voluntarily from the year 2022 and switch to the mandatory application from the year 2025 (Ministry of Finance, 2016). The survey was carried out with the help of the Google Form tool, and the data was processed using EFA and regression analysis methods on the SPSS 22.0 software. The findings show, for enterprises in Vietnam, that six factors influence the preparation of financial statements in accordance with IFRS, ranked in order of influence from high to low: (i) Related party requirements; (ii) Professional qualifications of accountants; (iii) Roles of enterprise managers; (iv) Forms of capital ownership in enterprises, (v) Institutional regulations, and (vi) Operational characteristics of the enterprise. In addition, the study also shows that, for enterprises in Vietnam, the requirements of related parties are an important factor to promote the preparation of the financial statements of enterprises according to IFRS.

A Study on the Characteristics of Condensable Fine Particles in Flue Gas (배출가스 중 응축성미세먼지 특성 연구)

  • Gong, Buju;Kim, Jonghyeon;Kim, Hyeri;Lee, Sangbo;Kim, Hyungchun;Jo, Jeonghwa;Kim, Jeonghun;Gang, Daeil;Park, Jeong Min;Hong, Jihyung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.5
    • /
    • pp.501-512
    • /
    • 2016
  • The study evaluated methods to measure condensable fine particles in flue gases and measured particulate matter by fuel and material to get precise concentrations and quantities. As a result of the method evaluation, it is required to improve test methods for measuring Condensable Particulate Matter (CPM) emitted after the conventional Filterable Particulate Matter (FPM) measurement process. Relative Standard Deviation (RSD) based on the evaluated analysis process showed that RSD percentages of FPM and CPM were around 27.0~139.5%. As errors in the process of CPM measurement and analysis can be caused while separating and dehydrating organic and inorganic materials from condensed liquid samples, transporting samples, and titrating ammonium hydroxide in the sample, it is required to comply with the exact test procedures. As for characteristics of FPM and CPM concentrations, CPM had about 1.6~63 times higher concentrations than FPM, and CPM caused huge increase in PM mass concentrations. Also, emission concentrations and quantities varied according to the characteristics of each fuel, the size of emitting facilities, operational conditions of emitters, etc. PM in the flue gases mostly consisted of CPM (61~99%), and the result of organic/inorganic component analysis revealed that organic dusts accounted for 30~88%. High-efficiency prevention facilities also had high concentrations of CPM due to large amounts of $NO_x$, and the more fuels, the more inorganic dusts. As a result of comparison between emission coefficients by fuel and the EPA AP-42, FPM had lower result values compared to that in the US materials, and CPM had higher values than FPM. For the emission coefficients of the total PM (FPM+CPM) by industry, that of thermal power stations (bituminous coal) was 71.64 g/ton, and cement manufacturing facility (blended fuels) 18.90 g/ton. In order to estimate emission quantities and coefficients proper to the circumstances of air pollutant-emitting facilities in Korea, measurement data need to be calculated in stages by facility condition according to the CPM measurement method in the study. About 80% of PM in flue gases are CPM, and a half of which are organic dusts that are mostly unknown yet. For effective management and control of PM in flue gases, it is necessary to identify the current conditions through quantitative and qualitative analysis of harmful organic substances, and have more interest in and conduct studies on unknown materials' measurements and behaviors.

Practical seismic assessment of unreinforced masonry historical buildings

  • Pardalopoulos, Stylianos I.;Pantazopoulou, Stavroula J.;Ignatakis, Christos E.
    • Earthquakes and Structures
    • /
    • v.11 no.2
    • /
    • pp.195-215
    • /
    • 2016
  • Rehabilitation of historical unreinforced masonry (URM) buildings is a priority in many parts of the world, since those buildings are a living part of history and a testament of human achievement of the era of their construction. Many of these buildings are still operational; comprising brittle materials with no reinforcements, with spatially distributed mass and stiffness, they are not encompassed by current seismic assessment procedures that have been developed for other structural types. To facilitate the difficult task of selecting a proper rehabilitation strategy - often restricted by international treaties for non-invasiveness and reversibility of the intervention - and given the practical requirements for the buildings' intended reuse, this paper presents a practical procedure for assessment of seismic demands of URM buildings - mainly historical constructions that lack a well-defined diaphragm action. A key ingredient of the method is approximation of the spatial shape of lateral translation, ${\Phi}$, that the building assumes when subjected to a uniform field of lateral acceleration. Using ${\Phi}$ as a 3-D shape function, the dynamic response of the system is evaluated, using the concepts of SDOF approximation of continuous systems. This enables determination of the envelope of the developed deformations and the tendency for deformation and damage localization throughout the examined building for a given design earthquake scenario. Deformation demands are specified in terms of relative drift ratios referring to the in-plane and the out-of-plane seismic response of the building's structural elements. Drift ratio demands are compared with drift capacities associated with predefined performance limits. The accuracy of the introduced procedure is evaluated through (a) comparison of the response profiles with those obtained from detailed time-history dynamic analysis using a suite of ten strong ground motion records, five of which with near-field characteristics, and (b) evaluation of the performance assessment results with observations reported in reconnaissance reports of the field performance of two neoclassical torsionally-sensitive historical buildings, located in Thessaloniki, Greece, which survived a major earthquake in the past.

A Study on the pyrolysis characteristics of sewage sludge by the temperature conditions (온도변화에 따른 하수슬러지의 열분해 특성에 관한 연구)

  • Ha, Sang-An;Kho, Hyun-Woong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.3
    • /
    • pp.42-50
    • /
    • 2003
  • Pyrolysis of maize is experimentally investigated in bench-scale rotary kiln in semi-continuous operation. The operational parameters varied are the temperature($450{\sim}800^{\circ}C$), the solids residence time(7~20 min). Important parameters studied include the running time, water content of sewage sludge, solids amount of sewage sludge(TS%) by the varied temperature. Also, with the increasing of temperature, how the yield of oil and char product change was observed, and the distribution of gas production components was observed. The gas of $C_1{\sim}C_3$ yield increased and oil of $C4{\sim}C6$ yield decreased along with pyrolysis temperature of $670^{\circ}C$ by the run time of 9 min. The results showed the expected strong influence of pyrolysis temperature and a noticeable influence of running time.

  • PDF