• Title/Summary/Keyword: operational environmental characteristics

Search Result 182, Processing Time 0.025 seconds

Acoustic emission source location and noise cancellation for crack detection in rail head

  • Kuanga, K.S.C.;Li, D.;Koh, C.G.
    • Smart Structures and Systems
    • /
    • v.18 no.5
    • /
    • pp.1063-1085
    • /
    • 2016
  • Taking advantage of the high sensitivity and long-distance detection capability of acoustic emission (AE) technique, this paper focuses on the crack detection in rail head, which is one of the most vulnerable parts of rail track. The AE source location and noise cancellation were studied on the basis of practical rail profile, material and operational noise. In order to simulate the actual AE events of rail head cracks, field tests were carried out to acquire the AE waves induced by pencil lead break (PLB) and operational noise of the railway system. Wavelet transform (WT) was first utilized to investigate the time-frequency characteristics and dispersion phenomena of AE waves. Here, the optimal mother wavelet was selected by minimizing the Shannon entropy of wavelet coefficients. Regarding the obvious dispersion of AE waves propagating along the rail head and the high operational noise, the wavelet transform-based modal analysis location (WTMAL) method was then proposed to locate the AE sources (i.e. simulated cracks) respectively for the PLB-induced AE signals with and without operational noise. For those AE signals inundated with operational noise, the Hilbert transform (HT)-based noise cancellation method was employed to improve the signal-to-noise ratio (SNR). Finally, the experimental results demonstrated that the proposed crack detection strategy could locate PLB-simulated AE sources effectively in the rail head even at high operational noise level, highlighting its potential for field application.

A Study on The Suitability Assessment of a Coastal Maritime Transportation Network Considering Spatio-Temporal Operational and Environmental Characteristics

  • Hyun-Suk Kim;Eui-Jong Lee;Young-Joong Ahn;Yun-Sok Lee
    • Journal of Navigation and Port Research
    • /
    • v.48 no.5
    • /
    • pp.409-417
    • /
    • 2024
  • Recently, various marine development initiatives, including offshore wind farms and marina port facilities, have been launched to enhance utilization of coastal waters. In addition, advancements in technologies for autonomous ships and wing-in-ground effect craft are progressing swiftly, increasing the complexity of maritime traffic. Accordingly, proactive policy development and research are needed to ensure safe navigation and decrease maritime accidents. The dynamic interplay between vessel traffic and geographical features in coastal waters necessitates spatio-temporal analysis. Factors such as currents, waves, and fog, along with vessel traffic services, play pivotal roles in managing maritime traffic. In this study, AIS data were used to quantitatively evaluate the distribution and utilization of maritime traffic in coastal waters using a grid cell approach. Furthermore, a suitability model for maritime traffic routes was developed, taking into account spatio-temporal operational and environmental characteristics. Results were compared to existing national maritime traffic route and offshore wind farm plans, providing valuable insights for the development of future maritime traffic networks.

An operational analysis and dynamic behavior for a landing gear system using ADAMS (ADAMS를 이용한 항공기 착륙장치 작동 동적거동 해석)

  • Choi, Sup;Kwon, Hyuk-Beom;Chung, Sang-Joon;Jung, Chang-Rae;Sung, Duck-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.6
    • /
    • pp.110-117
    • /
    • 2003
  • The operational characteristics of the landing gear retraction/extension depend on the complexity of design variables operational/environmental conditions. In order to meet the requirements of minimum stow area and performance, the integration of the landing gear system requires operational kinematic and dynamic analysis considering an effect of its related system. This study investigates operational dynamic behaviors of the T-50 landing gear system using ADAMS. Taking into account for various operational/environmental conditions, an analysis of dynamic behavior on the landing gear operational characteristics is performed with experience derived from a wide range of proprietary designs. Analytical results are presented for discussing the effects of temperature, aerodynamic and maneuver load on normal/emergency operation of the landing gears and doors. This analysis leads us to the conclusion that the proposed program is shown to be a better quantitative one that apply to a new development and troubleshooting of the landing gear system.

Optimal Operational Characteristics of Wastewater Treatment Using Hydrocyclone in a Sequencing Batch Reactor Process (연속회분식반응기 공정의 하이드로사이클론 도입 하수처리 최적 운전특성)

  • Kwon, Gyutae;Kim, Hyun-Gu;Ahn, Dae-Hee
    • Journal of Environmental Science International
    • /
    • v.31 no.4
    • /
    • pp.295-309
    • /
    • 2022
  • The purpose of this study was to evaluate the operational characteristics of wastewater treatment using Sequencing Batch Reactor (SBR) with Aerobic Granular Sludge (AGS) separator in the pilot plant. Pilot plant experiments were conducted using SBR with AGS separator and pollution removal efficiencies were evaluated based on the operational condition and surface properties of AGS. The results of the operation on water quality of the effluent showed that the average concentration of total organic carbon, suspended solids, nitrogen, and phosphorus was 6.89 mg/L, 7.33 mg/L, 7.33 mg/L, and 0.2 mg/L, respectively. All these concentrations complied the effluent standard in Korea. The concentration of mixed liquor suspended solid (MLSS) fluctuated, but the AGS/MLSS ratio was constant at 86.5±1.3%. Although the AGS/MLSS ratio was constant, sludge volume index improved. These results suggested that the particle discharged fine sludge and increased the AGS praticle size in the AGS. Optical microscopy revealed the presence of dense AGS at the end of the operation, and particles of > 0.6 mm were found. Compared to those of belt-type AGS separator, the required area and power consumption of the hydrocyclone-type AGS separator were reduced by 27.5% and 83.8%, respectively.

Control of Methyl Tertiary-Butyl Ether via Carbon-Doped Photocatalysts under Visible-Light Irradiation

  • Lee, Joon-Yeob;Jo, Wan-Kuen
    • Environmental Engineering Research
    • /
    • v.17 no.4
    • /
    • pp.179-184
    • /
    • 2012
  • The light absorbance of photocatalysts and reaction kinetics of environmental pollutants at the liquid-solid and gas-solid interfaces differ from each other. Nevertheless, many previous photocatalytic studies have applied the science to aqueopus applications without due consideration of the environment. As such, this work reports the surface and morphological characteristics and photocatalytic activities of carbon-embedded (C-$TiO_2$) photocatalysts for control of gas-phase methyl tertiary-butyl ether (MTBE) under a range of different operational conditions. The C-$TiO_2$ photocatalysts were prepared by oxidizing titanium carbide powders at $350^{\circ}C$. The characteristics of the C-$TiO_2$ photocatalysts, along with pure TiC and the reference pure $TiO_2$, were then determined by X-ray diffraction, scanning emission microscope, diffuse reflectance ultraviolet-visible-near infrared (UV-VIS-NIR), and Fourier transform infrared spectroscopy. The C-$TiO_2$ powders showed a clear shift in the absorbance spectrum towards the visible region, which indicated that the C-$TiO_2$ photocatalyst could be activated effectively by visible-light irradiation. The MTBE decomposition efficiency depended on operational parameters, including the air flow rate (AFR), input concentration (IC), and relative humidity (RH). As the AFRs decreased from 1.5 to 0.1 L/min, the average efficiencies for MTBE increased from 11% to 77%. The average decomposition efficiencies for the ICs of 0.1, 0.5, 1.0, and 2.0 ppm were 77%, 77%, 54%, and 38%, respectively. In addition, the decomposition efficiencies for RHs of 20%, 45%, 70%, and 95% were 92%, 76%, 50%, and 32%, respectively. These findings indicate that the prepared photocatalysts could be effectively applied to control airborne MTBE if their operational conditions were optimized.

Relationship between Energy Consumption and Operational Variables at Wastewater Treatment Plant (상관분석 및 의사결정나무분석을 통한 하수처리시설의 에너지 소비량과 운영인자의 관계 분석)

  • Jung, Yong-Jun;Kim, Ye-Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.3
    • /
    • pp.253-260
    • /
    • 2016
  • To reduce energy consumption in wastewater treatment plants (WWTPs), renewable energy applications such as small hydropower, solar energy, and wind energy are popular. However, it should be noticed that energy originated from operation of wastewater treatment process can be reduced through optimized operation based on analysis of factors affecting energy. In this research, the relationship to the various operational variables and influent factors was explored using correlation analysis and decision tree algorithm. Due to the non-linear characteristics of the process, it was difficult to find clear linear patterns through correlation analysis. However, decision tree algorithm showed its usefulness in uncovering hidden patterns that consume energy. As operational factors, influent flowrate, the amount of aeration, nitrate recycling pumping rate, and sludge wasting pumping rate were selected as important factors. For environmental factors associated with influent compositions and removal rate, BOD and T-N removal rate were selected as significant factors.

The Reaction Characteristics of NOx/N2O and NH3 in Crematory Facility SCR Process with Load Variation (부하변동이 큰 화장시설 SCR 공정에서 NOx/N2O 및 NH3 동시 저감 특성 연구)

  • Park, Poong Mo;Lee, Ha Young;Yeo, Sang-Gu;Yoon, Jae-Rang;Dong, Jong In
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.6
    • /
    • pp.605-615
    • /
    • 2017
  • Efficient simultaneous reduction conditions for $NO_x$ and $NH_3$-slip was investigated in SCR (Selective Catalytic Reduction) process with load variation by applying dual catalysts (SCR catalyst, $NH_3$ decomposition catalyst) system. $N_2O$ formation characteristics were analyzed to look into possible undesirable reaction pathways. In the experiments of catalyst characteristics, various operational variables were tested for the combined catalytic system, such as $NH_3/NO_x$ ratio, temperature, oxygen concentration and $H_2O$. The reaction characteristics of $NO_x$, $NH_3$ and $N_2O$ were analyzed and optimal conditions could be evaluated for the combustion facility with varied load. In terms of $NO_x/NH_3$ simultaneous reduction and $N_2O$ formation suppression, optimal condition was considered NSR 1.2 and temperature $300^{\circ}C$. At this operational condition, $NO_x$ conversion was 98%, $NH_3$ reduction efficiency was 95%, generated $N_2O$ concentration 9.5 ppm with inlet $NO_x$ concentration of 100 ppm. In $NH_3-SCR$ process with $NH_3$ decomposition catalyst, $NO_x$ and $NH_3$ can be considered to be reduced simultaneously at limited conditions. The results of this study may be utilized as basic data at facilities requiring simultaneous $NO_x$ and $NH_3$ reduction for facilities with load variation.

A Study on The Workforce Agility and Operational Performance of Distribution Center - Focused on Busan New Port Distripark - (인력의 민첩성과 물류센터의 운영성과에 관한 연구 - 부산 신항 항만배후단지를 중심으로 -)

  • Cho, Yang-Il;Kim, Seog-Soo
    • Korea Trade Review
    • /
    • v.44 no.3
    • /
    • pp.25-42
    • /
    • 2019
  • This research examined the mediation effect of Workforce Agility (WA) on the relationship between environmental uncertainty and operational performance. We manipulated the control variables that are known to be affected by employment flexibility. Employment flexibility is caused by idiosyncratic characteristics of Korean port system. The analysis was tested by Baron & Kenny's method. The result indicates that each path of the proposed model is significant. Furthermore, the mediation effect was checked with the Sobel Test. The research revealed that environment uncertainty poses an indirect effect on operational performance. Both supply/demand uncertainty and technological uncertainty affected operational performance through the mediation effect of WA. Most of the distribution centers located in Busan Newport Distripark are operated in a bimodal labor (human resource) system which includes both permanent employees (workers) and temporary employees (workers). This empirical research provides theoretical and managerial implications by suggesting ways to increase efficiency in distribution center operation through WA enhancement, and to improve the unloading labor system.

Performance of Local Government Hospitals (지방공사 의료원의 성과에 영향을 미치는 요인 연구)

  • 이경희;권순만
    • Health Policy and Management
    • /
    • v.13 no.2
    • /
    • pp.101-124
    • /
    • 2003
  • Performance of public hospitals is difficult to define and measure because not only their managerial or financial performance but also their role as a public entity is important. The purpose of this paper is to examine the internal and external factors that influence the performance of local government hospitals. A multiple regression was performed to analyze the effects of the environmental, organizational, operational, and cost-related factors on the return on total assets(ROA), operating margin(OM), and the ratio of Medicaid patients. Empirical results show that financial performance (ROA and OM) are more influenced by operational or cost-related factors, while the ratio of Medicaid patients is more affected by environmental or organizational characteristics. It is noteworthy that competition and the contract with private sector management have negative effects on the ratio of Medicaid patients that local government hospitals treat.

Performance Analysis of a Hydrodynamic Separator for Treating Particulate Pollutants in Highway Rainfall Runoff

  • Yu, Jianghua;Yi, Qitao;Kim, Young-Chul
    • Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.262-269
    • /
    • 2009
  • This study examined the separation characteristics of particles in the rainfall runoff from paved roads using a ${\varphi}7.5$ cm hydrocyclone. The volume fraction and total suspended solids concentrations in the overflow and underflow from the hydrocyclone, as well as the separation efficiency were determined. The results indicated that the overflow volume increased with increasing operational pressure, but decreased with decreasing ratio of underflow outlet to inlet sizes ($D_u/D_i$), while the underflow to overflow volumes showed contrary behavior. The total suspended solid (TSS) concentration ratio between the overflow and inflow ($TSS_{over/in}$) decreased as a function of the operational pressure, while the corresponding ratio of underflow to inflow ($TSS_{under/in}$) increased. There was no visible difference in the $TSS_{over/in}$ with increasing $D_u/D_i$ ratio, but the $TSS_{under/in}$ decreased sharply. The particle removal efficiency was mainly affected by the particle size.