Journal of the Korea Academia-Industrial cooperation Society
/
v.20
no.2
/
pp.587-592
/
2019
The importance of software technologies is becoming more prominent because of the competition to secure a competitive edge in software, which has been intensified since the emergence of smartphones and IoT. Thus, to assure the initiative in the global software industry and to foster superior human resources, there is a growing need for outstanding software development professionals. This paper analyzes the factors that affect the basic perception of software, the need for software development, and the enhancement of software coding ability based on a compulsory software class, which aims to increase the workforce of the converged software industry. The analysis shows that among other technical practices to enhance coding ability, learner-centered technical contents showed the most positive effect regarding the recognition and motive of development and are an essential factor in improving coding skills. The findings indicate that the need for program development and active involvement in the development of the program are the most important factors in improving the practical ability. The analysis presents meaningful results by suggesting a methodology for improving software development capabilities.
In the present day context of changing information needs of the farmers and diversified production systems there is an urgent need to look for the effective extension support system for the small and marginal farmers in the developing countries like India. The rapid developments in the collection and analysis of field data by using the spatial technologies like GPS&GIS were made available for the extension functionaries and clientele for the diversified information needs. This article describes the GIS and GPS based decision support system in precision agriculture for the resource poor farmers. Precision farming techniques are employed to increase yield, reduce production costs, and minimize negative impacts to the environment. The parameters those can affect the crop yields, anomalous factors and variations in management practices can be evaluated through this GPS and GIS based applications. The spatial visualisation capabilities of GIS technology interfaced with a relational database provide an effective method for analysing and displaying the impacts of Extension education and outreach projects for small and marginal farmers in precision agriculture. This approach mainly benefits from the emergence and convergence of several technologies, including the Global Positioning System (GPS), geographic information system (GIS), miniaturised computer components, automatic control, in-field and remote sensing, mobile computing, advanced information processing, and telecommunications. The PPP convergence of person (farmer), project (the operational field) and pixel (the digital images related to the field and the crop grown in the field) will better be addressed by this decision support model. So the convergence and emergence of such information will further pave the way for categorisation and grouping of the production systems for the better extension delivery. In a big country like India where the farmers and holdings are many in number and diversified categorically such grouping is inevitable and also economical. With this premise an attempt has been made to develop a precision farming model suitable for the developing countries like India.
The purpose of this study is to empirically examine the ICT legal system and the ICT performance by new technology's investment for government organizational changes. I will show the impact of government ICT investment interest, competency, convergence and process change, and then present policy direction. A research method used the structural equations. As a result of analysis, ICT investment interest and operational competency showed the negative impact the ICT legal system and the role change of ICT process and convergence of new technologies showed the positive impact. The Framework Act on National Information showed the positive impact on organizational performance, but the E-Government Act showed the negative impact. The contribution in the study expanded organization research from MIS perspective, and each organization is required the conflict resolve by ICT investment. A future study will require longitudinal study of ICT capabilities from previous to present government.
Journal of the Korea Institute of Information and Communication Engineering
/
v.23
no.2
/
pp.223-228
/
2019
Recently, the United States has been trying to strengthen its cybersecurity by upgrading its position as an Unified Combatant Command that focuses on the Cyber Command in the United States, strengthening operations in cyberspace, and actively responding to cyber threats. Other major powers are also working to strengthen cyber capabilities, and they are working to strengthen their organization and power. The world demands economic power for its own interests rather than its own borders. But Cyber World is a world without borders and no defense. Therefore, a cyber weapon system is necessary for superiority in cyberspace (defense, attack) for national cybersecurity. In this paper, we analyze operational procedures for cyber weapons operation. And we design cyber weapons to analyze and develop the best cyber weapons to lead victory in cyberwarfare. It also conducts cyber weapons research to solve the confrontation between Cyber World.
Purpose - This paper has an objective to suggest reasonable criteria in choosing Incoterms 2020 rules for efficient and effective logistics management in that the Incoterms rules affect not only the rights and obligations of the parties to the sales contract but also the control and management of logistics system and transaction costs in the transaction. Design/methodology - An analysis of the various factors is needed to assess the positive or negative impact on global value chain in choosing Incoterms rules from a total logistics view. This study analyzes the impact of which the content of individual incoterms rules can have on the operation of international logistics systems under the global value chain from a strategic perspective to suggest reasonable criteria for selection of Incoterms rules depending on the transaction situation. Findings - Results of this study shows that consideration of various aspects which includes the characteristics of the products, logistics capabilities, infrastructure, transaction volume, operational cost, customs regulations, tax and accounting should be reflected in choosing the appropriate Incoterms rules. Therefore, in order to minimize the total cost and improve logistics performance, it may be helpful to develop a decision support model which allows users to select appropriate Incoterms rules based on various influencing factors. Originality/value - This Study is different from previous research which has mainly focused on the rights and obligations of the parties to the transaction regarding the transfer of risks and costs under the Incoterms. In addition, this study has significance in that it provides implications for export and import companies that can be able to use Incoterms as a strategic tool to efficiently manage the global value chain and improve supply chain performance.
Licensing the next-generation of nuclear reactor designs requires extensive use of Modeling and Simulation (M&S) to investigate system response to many operational conditions, identify possible accidental scenarios and predict their evolution to undesirable consequences that are to be prevented or mitigated via the deployment of adequate safety barriers. Deep Learning (DL) and Artificial Intelligence (AI) can support M&S computationally by providing surrogates of the complex multi-physics high-fidelity models used for design. However, DL and AI are, generally, low-fidelity 'black-box' models that do not assure any structure based on physical laws and constraints, and may, thus, lack interpretability and accuracy of the results. This poses limitations on their credibility and doubts about their adoption for the safety assessment and licensing of novel reactor designs. In this regard, Physics Informed Neural Networks (PINNs) are receiving growing attention for their ability to integrate fundamental physics laws and domain knowledge in the neural networks, thus assuring credible generalization capabilities and credible predictions. This paper presents the use of PINNs as surrogate models for accidental scenarios simulation in Nuclear Power Plants (NPPs). A case study of a Loss of Heat Sink (LOHS) accidental scenario in a Nuclear Battery (NB), a unique class of transportable, plug-and-play microreactors, is considered. A PINN is developed and compared with a Deep Neural Network (DNN). The results show the advantages of PINNs in providing accurate solutions, avoiding overfitting, underfitting and intrinsically ensuring physics-consistent results.
In this work, a multivariate time-series machine learning meta-model is developed to predict the transient response of a typical nuclear power plant (NPP) undergoing a steam generator tube rupture (SGTR). The model employs Recurrent Neural Networks (RNNs), including the Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and a hybrid CNN-LSTM model. To address the uncertainty inherent in such predictions, a Bayesian Neural Network (BNN) was implemented. The models were trained using a database generated by the Best Estimate Plus Uncertainty (BEPU) methodology; coupling the thermal hydraulics code, RELAP5/SCDAP/MOD3.4 to the statistical tool, DAKOTA, to predict the variation in system response under various operational and phenomenological uncertainties. The RNN models successfully captures the underlying characteristics of the data with reasonable accuracy, and the BNN-LSTM approach offers an additional layer of insight into the level of uncertainty associated with the predictions. The results demonstrate that LSTM outperforms GRU, while the hybrid CNN-LSTM model is computationally the most efficient. This study aims to gain a better understanding of the capabilities and limitations of machine learning models in the context of nuclear safety. By expanding the application of ML models to more severe accident scenarios, where operators are under extreme stress and prone to errors, ML models can provide valuable support and act as expert systems to assist in decision-making while minimizing the chances of human error.
Journal of The Geomorphological Association of Korea
/
v.28
no.1
/
pp.83-99
/
2021
Burn severity analysis using satellite imagery has high capabilities for research and management in inaccessible areas. We extracted the forest fire area of the DMZ (Demilitarized Zone) in the western Imjin Estuary which is restricted to access due to the confrontation between South and North Korea. Then we analyzed the forest fire severity and recoverability using atmospheric corrected Surface Reflectance Level-2 data collected from Landsat-8 OLI (Operational Land Imagery) / TIRS (Thermal Infrared Sensor). Normalized Burn Ratio (NBR), differenced NBR (dNBR), and Relative dNBR (RdNBR) were analyzed based on changes in the spectral pattern of satellite images to estimate burn severity area and intensity. Also, we evaluated the recoverability after a forest fire using a land cover map which is constructed from the NBR, dNBR, and RdNBR analyzed results. The results of dNBR and RdNBR analysis for the six years (during May 30, 2014 - May 30, 2020) showed that the intensity of monthly burn severity was affected by seasonal changes after the outbreak and the intensity of annual burn severity gradually decreased after the fire events. The regrowth of vegetation was detected in most of the affected areas for three years (until May 2020) after the forest fire reoccurred in May 2017. The monthly recoverability (from April 2014 to December 2015) of forests and grass fields was increased and decreased per month depending on the vegetation growth rate of each season. In the case of annual recoverability, the growth of forest and grass field was reset caused by the recurrence of a forest fire in 2017, then gradually recovered with grass fields from 2017 to 2020. We confirmed that remote sensing was effectively applied to research of the burn severity and recoverability in the DMZ. This study would also provide implications for the management and construction statistics database of the forest fire in the DMZ.
This case focuses on WE CAN Cookies, a social enterprise in South Korea that was founded in 2001 with the support of the Korean Roman Catholic Church. WE CAN Cookies specializes in the making of high quality organic cookies. As a nonprofit organization that uses a labor force of mostly mentally disabled workers, the company faces many challenges that normal companies do not experience. The company had to initially overcome the social prejudice that the handicapped cannot make good cookies. Despite the religious background and social agenda of the company, it started making inroads as a cookie-making business only after its managers, including the nuns who run it began adopting modern management philosophies and practices. The WE CAN Cookies case illustrates three main marketing-related concepts: One, WE CAN Cookies is a good example of how social enterprises face a broader spectrum of challenges when compared to conventional profit-seeking enterprises. Two, WE CAN Cookies demonstrates that social enterprises need flexibility in formulating their business strategies. Even though WE CAN Cookies is subject to many constraints, as a social enterprise it can also take advantage of new opportunities for obtaining support from the government and from the private sector. Three, WE CAN Cookies shows that these types of operations need to create greater balance in their social and business competencies to ensure the long term viability. Social enterprises are certified by governments with the stated goal of improving the lives and the wellbeing of special interest group. As important as achieving these objectives are, social enterprises also must additionally be able to build their operational capabilities not only in manufacturing but also in functions such as marketing.
This paper presents a study on the integration of 3D-stacked dual-tip RRAM with a CNN accelerator architecture, leveraging its low drive current characteristics and scalability in a 3D stacked configuration. The dual-tip structure is utilized in a parallel connection format in a synaptic array to implement multi-level capabilities. It is configured within a Network-on-chip style accelerator along with various hardware blocks such as DAC, ADC, buffers, registers, and shift & add circuits, and simulations were performed for the CNN accelerator. The quantization of synaptic weights and activation functions was assumed to be 16-bit. Simulation results of CNN operations through a parallel pipeline for this accelerator architecture achieved an operational efficiency of approximately 370 GOPs/W, with accuracy degradation due to quantization kept within 3%.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.