• Title/Summary/Keyword: operation test

Search Result 5,241, Processing Time 0.041 seconds

Economic Feasibility Study for Commercial Production of Bio-hydrogen (해양바이오수소개발 사업의 상업생산을 위한 예비경제성평가)

  • Park, Se-Hun;Yoo, Young-Don;Kang, Sung Gyun
    • Ocean and Polar Research
    • /
    • v.38 no.3
    • /
    • pp.225-234
    • /
    • 2016
  • This project sought to conduct an economic feasibility study regarding the commercial production of bio-hydrogen by the marine hyperthermophilic archaeon, Thermococcus onnurineus NA1 using carbon monoxide-containing industrial off-gas. We carried out the economic evaluation of the bio-hydrogen production process using the raw material of steel mill by-product gas. The process parameter was as follows: $H_2$ production rate was 5.6 L/L/h; the conversion of carbon monoxide was 60.7%. This project established an evaluation criterion for about 10,000 tonne/year. Inflation factors were considered as 3%. The operating costs were recalculated based on prices in 2014. The total investment required for development was covered 30% by capital and 70% by a loan. The operation cost for the 0.5-year test and integration, and the cost for the first three months in the 50% production period were considered as the working capital in the cost estimation. The costs required for the rental of office space, facilities, and other related costs from the construction through to full-scale production periods were considered as continuing expenses. Materials, energy, waste disposal and other charges were considered as the operating cost of the development system. Depreciation, tax, maintenance and repair, insurance, labor, interest rate charges, general and administrative costs, lubrication and miscellaneous expenses were also calculated. The hydrogen price was set at US$ 4.15/kg for the economic evaluation. As a result, the process was considered to be economical with the payback period of 6.3 years, NPV of 18 billion Won and IRR of 26.7%.

Analysis of Cognition Characteristic for Operators' Roles in Mountain Eco Villages - focused on an improvement of empowerment training - (산촌생태마을 운영매니저의 역할에 대한 인식 특성 분석 - 역량강화교육 개선을 중심으로 -)

  • Kim, Seong-Hak;Seo, Jeong-Weon
    • Journal of Korean Society of Rural Planning
    • /
    • v.19 no.2
    • /
    • pp.173-181
    • /
    • 2013
  • The importance of human resources empowerment for operation and management is increasing for sustainable effects and improvement in mountain eco village development projects. This study aimed to understand the cognition characteristics of operator who works for mountain eco villages as part of the mountain village development and to suggest improvement methods in empowerment training aspects. The survey contained operator's empowerment and operator systems in mountain eco villages and the results were analyzed for the study. Operators who joined the mountain eco village operator training course by Korea Forest Service were conducted the survey on March 12th~13th in 2012 and March 13th~15th in 2013. 69 and 58 of questionnaires were collected respectively and analyzed for the study. T-test was applied to Intergroup cognition difference and regression analysis was used for influential factors in necessity of operator's role. Collected data was analyzed by statistical package programme SPSS 18.0 version. According to the comparison of empowerment cognition with contingent upon training experience, 'harmony with residents' showed significantly difference at p<0.05 level. In the recognition comparison for prospect of future mountain eco village development, 'various training experiences' was significantly difference at p<0.01 level between positive and negative prospect group. Regression analysis revealed that 'communication with village leader', 'harmony with residents', and 'idea related to the project' have an effect on necessity of operator's empowerment significantly. Based on the results, the study suggests improved directions for operator's empowerment training as a horizontal leader who conduces a mountain village.

An Importance and Satisfaction Analysis of Selection Attribute by Rural Theme Park Customers - A Case Study on Anseong Farm Land - (농촌테마공원 이용객의 선택속성에 대한 중요도와 만족도 분석 - 안성팜랜드를 중심으로 -)

  • Bae, Yoon-Kie;Kim, Na-Young;Jeon, In-Cheol;Kim, Yong-Geun
    • Journal of Korean Society of Rural Planning
    • /
    • v.19 no.2
    • /
    • pp.1-10
    • /
    • 2013
  • This study is intended to examine the perception of importance-satisfaction in selective properties of rural theme park with the users and to suggest operation method and implications for rural theme parks which are being built on a nation-wide basis. The study results are as follows: First, the results from the analysis on importance-satisfaction in the selective properties showed that both attractiveness of natural landscape and excellence of surrounding environment are high. Second, the t-test with matched samples for importance-satisfaction showed that there were significant statistical differences in all items, and the users rated satisfaction lower than the importance. Third, IPA results showed that the items such as diversity of festival event, accessibility and convenience of public transportation, appropriateness of expense and kindness in service appeared in the 2nd quadrant 'direction of concentrated efforts'Therefore, this study was able to identify the perception of importance-satisfaction among the users of rural theme parks. The study findings suggest that it is necessary to preserve surrounding natural environment, ensure appropriate pricing, introduce events and increase service level in constructing and operating rural theme parks.

Stability Index Based Voltage Collapse Prediction and Contingency Analysis

  • Subramani, C.;Dash, Subhransu Sekhar;Jagdeeshkumar, M.;Bhaskar, M. Arun
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.438-442
    • /
    • 2009
  • Voltage instability is a phenomenon that could occur in power systems due to stressed conditions. The result would be an occurrence of voltage collapse leading to total blackout of the system. Therefore, voltage collapse prediction is an important part of power system planning and operation, and can help ensure that voltage collapse due to voltage instability is avoided. Line outages in power systems may also cause voltage collapse, thereby implying the contingency in the system. Contingency problems caused by line outages have been identified as one of the main causes of voltage instability in power systems. This paper presents a new technique for contingency ranking based on voltage stability conditions in power systems. A new line stability index was formulated and used to identify the critical line outages and sensitive lines in the system. Line outage contingency ranking was performed on several loading conditions in order to identify the effect of an increase in loading to critical line outages. Correlation studies on the results obtained from contingency ranking and voltage stability analysis were also conducted, and it was found that line outages in weak lines would cause voltage instability conditions in a system. Subsequently, using the results from the contingency ranking, weak areas in the system can be identified. The proposed contingency ranking technique was tested on the IEEE reliability test system.

Clinical Evaluation for System Performance of Image Intensifiers (상강화기의 임상평가)

  • Kim, Chang-Seon;Charles R. Wilson
    • Progress in Medical Physics
    • /
    • v.9 no.3
    • /
    • pp.143-154
    • /
    • 1998
  • The image intensifier is the key component which determines the imaging characteristics in a fluoroscopic imaging system. A system performance program for clinical evaluation of two image intensifiers, that is simple, non-invasive and time effective, was described. Tests were grouped into three headings: x-ray generator, image quality, and collimation. For the x-ray generator, the kVp accuracy and the automatic exposure control operation were compared. Low- and high-contrast resolution measurements, and mesh pattern study belong to the image quality tests and those tests were performed for the video monitor and photospot images. For the collimation, usable field diameter and image distortion of image intensifiers were measured and quantified. The procedures and the results are hoped to be used for the clinical evaluation of system performance and/or acceptance tests for image intensifiers.

  • PDF

A Monitoring System Based on an Artificial Neural Network for Real-Time Diagnosis on Operating Status of Piping System (가스배관망 작동상태 실시간 진단용 인공신경망 기반 모니터링 시스템)

  • Jeon, Min Gyu;Cho, Gyong Rae;Lee, Kang Ki;Doh, Deog Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.2
    • /
    • pp.199-206
    • /
    • 2015
  • In this study, a new diagnosis method which can predict the working states of a pipe or its element in realtime is proposed by using an artificial neural network. The displacement data of an inspection element of a piping system are obtained by the use of PIV (particle image velocimetry), and are used for teaching a neural network. The measurement system consists of a camera, a light source and a host computer in which the artificial neural network is installed. In order to validate the constructed monitoring system, performance test was attempted for two kinds of mobile phone of which vibration modes are known. Three values of acceleration (minimum, maximum, mean) were tested for teaching the neural network. It was verified that mean values were appropriate to be used for monitoring data. The constructed diagnosis system could monitor the operation condition of a gas pipe.

Operation characteristics of partial oxidation reformer for transportation fuels (수송 연료용 부분산화 개질기의 운전특성)

  • Lee, Sangho;Bae, Joongmyeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.159.1-159.1
    • /
    • 2011
  • Partial oxidation reformer was fabricated and operated using commercial transportation fuels. Fuel injector and heating coil were used for fuel atomization and startup, respectively. The reformer was designed to produce syngas for $150{\sim}200W_e$ class solid oxide fuel cell. The reformer was operated in the $O_2$/C range between 0.6 and 0.8 while the capacity was fixed at $150W_e$. The temperature range in catalyst bed was between $500^{\circ}C$ and $900^{\circ}C$. Only 83% fuel was converted to $H_2$, CO, $CO_2$ and $CH_4$ at the operating conditions. The lowest temperature increase to $700^{\circ}C$ when the reformer was operated at $200W_e$, Although the temperature profiles was improved, fuel conversion was 88%. On the other hand, fuel was completely converted when micro-reactor operated at the same condition. This difference maybe due to aromatic compounds formation at homogeneous region. In addition, a significant amount of coke deposition was observed at vent line. Homogeneous reaction depends on the degree of mixing. For this purpose, two fluid nozzle and Ultra sonic injector were compared to investigate the effect of atomization. Sauter mean diameter(SMD) of Ultra sonic injector was lower than two-fluid nozzle at test condition. However, conversion efficiency and fuel conversion were not improved by using two-fluid nozzle. these results imply that the temperature of homogeneous reaction region should be controlled to prevent coke formation.

  • PDF

Nondestructive Inspection of Launch Vehicle Structural Components (우주 발사체 구조 요소의 비파피검사)

  • Kong, Cheol-Won;Youn, Jong-Hoon;Park, Jae-Sung;Eun, Se-Won;Jang, Young-Soon;Yi, Yeong-Moo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.331-337
    • /
    • 2009
  • Space launch vehicles require highly reliable, lightweight structures. It is thus important to monitor the structural health of these components with nondestructive inspections. In this paper, we studied an example of a nondestructive inspection that was partially applied to the manufacture and inspection of a launch vehicle. Ultrasonic tests, X-rays, tapping, and acoustic emissions comprised the inspection method. A payload fairing, high pressure tank, fastener part, and bonding part were used as hardware to be inspected. We proposed a quantitative standard for debonding inspection of the payload fairing and acoustic emission data for the proof test of the high pressure tank. We analyzed the fracture mode of the sandwich fastener part according to frequency changes. We also proposed a standard specimen for ultrasonic inspection of bonds of different materials. The present analyses and results provide data for evaluation of the launch operation sequence to ensure launch vehicles afford high reliability.

Eddy Current Bobbin Probe Design for Steam Generator Tubes in NPPs (원전 증기발생기 전열관 와전류검사 보빈탐촉자 설계)

  • Nam, Min-Woo;Lee, Hee-Jong;Jee, Dong-Hyun;Jung, Jee-Hong;Kim, Cheol-Gi
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.2
    • /
    • pp.89-96
    • /
    • 2007
  • The bobbin probe examination is basic and the important method among other ECT techniques for the steam generator tube integrity assesment that is practiced during each plant outage. The bobbin probe is one of the essential components which consist of the whole ECT examination system, and provides us a decisive data for the evaluation of tube integrity in compliance with acceptance criteria described in specific procedures. The selection of examination probe is especially important because the quality of acquired ECT data is determined by the probe design characteristics, such as geometry and operation frequency, and has enormous effects on examination results. In this study, An optimal differential bobbin probe is designed for the steam generator tube inspection in nuclear power plants(NPPs). Based on the test results for electrical and ECT signal characteristics, the prototype bobbin probe satisfies all the criteria.

Fault Detection of Rolling Element Bearing for Low Speed Machine Using Wiener Filter and Shock Pulse Counting (위너 필터와 충격 펄스 카운팅을 이용한 저속 기계용 구름 베어링의 결함 검출)

  • Park, Sung-Taek;Weon, Jong-Il;Park, Sung Bum;Woo, Heung-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.12
    • /
    • pp.1227-1236
    • /
    • 2012
  • The low speed machinery faults are usually caused by the bearing failure of the rolling elements. As the life time of the bearing is limited, the condition monitoring of bearing is very important to maintain the continuous operation without failures. A few monitoring techniques using time domain, frequency domain and fuzzy neural network vibration analysis are introduced to detect and diagnose the faults of the low speed machinery. This paper presents a method of fault detection for the rolling element bearing in the low speed machinery using the Wiener filtering and shock pulse counting techniques. Wiener filter is used for noise cancellation and it clearly makes the shock pulse emerge from the time signal with the high level of noise. The shock pulse counting is used to determine the various faults obviously from the shock signal with transient pulses not related with the bearing fault. Machine fault simulator is used for the experimental measurement in order to verify this technique is the powerful tool for the low speed machine compared with the frequency analysis. The test results show that the method proposed is very effective parameter even for the signal with high contaminated noise, speed variation and very low energy. The presented method shows the optimal tool for the condition monitoring purpose to detect the various bearing fault with high accuracy.