• Title/Summary/Keyword: operation chain detection

Search Result 10, Processing Time 0.026 seconds

Detection for Operation Chain: Histogram Equalization and Dither-like Operation

  • Chen, Zhipeng;Zhao, Yao;Ni, Rongrong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3751-3770
    • /
    • 2015
  • Many sorts of image processing software facilitate image editing and also generate a great number of doctored images. Forensic technology emerges to detect the unintentional or malicious image operations. Most of forensic methods focus on the detection of single operations. However, a series of operations may be used to sequentially manipulate an image, which makes the operation detection problem complex. Forensic investigators always want to know as much exhaustive information about a suspicious image's entire processing history as possible. The detection of the operation chain, consisting of a series of operations, is a significant and challenging problem in the research field of forensics. In this paper, based on the histogram distribution uniformity of a manipulated image, we propose an operation chain detection scheme to identify histogram equalization (HE) followed by the dither-like operation (DLO). Two histogram features and a local spatial feature are utilized to further determine which DLO may have been applied. Both theoretical analysis and experimental results verify the effectiveness of our proposed scheme for both global and local scenarios.

Towards Real-time Multi-object Tracking in CPU Environment (CPU 환경에서의 실시간 동작을 위한 딥러닝 기반 다중 객체 추적 시스템)

  • Kim, Kyung Hun;Heo, Jun Ho;Kang, Suk-Ju
    • Journal of Broadcast Engineering
    • /
    • v.25 no.2
    • /
    • pp.192-199
    • /
    • 2020
  • Recently, the utilization of the object tracking algorithm based on the deep learning model is increasing. A system for tracking multiple objects in an image is typically composed of a chain form of an object detection algorithm and an object tracking algorithm. However, chain-type systems composed of several modules require a high performance computing environment and have limitations in their application to actual applications. In this paper, we propose a method that enables real-time operation in low-performance computing environment by adjusting the computational process of object detection module in the object detection-tracking chain type system.

A Reliability Redundancy Optimization Problem with Continuous Time Absorbing Markov Chain (연속시간 흡수 마코프체인을 활용한 신뢰도 중복 최적화 문제)

  • Kim, Gak-Gyu;Baek, Seungwon;Yoon, Bong-Kyu
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.4
    • /
    • pp.290-297
    • /
    • 2013
  • The increasing level of operation in high-tech industry is likely to require ever more complex structure in reliability problem. Furthermore, system failures are more significant on society as a whole than ever before. Reliability redundancy optimization problem (RROP) plays a important role in the designing and analyzing the complex system. RROP involves selection of components with multiple choices and redundancy levels for maximizing system reliability with constraints such as cost, weight, etc. Meanwhile, previous works on RROP dealt with system with perfect failure detection, which gave at most a good solution. However, we studied RROP with imperfect failure detection and switching. Using absorbing Markov Chain, we present not a good solution but the optimal one. In this study, the optimal system configuration is designed with warm and cold-standby redundancy for k-out-of-n system in terms of MTTF that is one of the performance measures of reliability.

Development of a ladder-shape melting temperature isothermal amplification (LMTIA) assay for detection of African swine fever virus (ASFV)

  • Wang, Yongzhen;Wang, Borui;Xu, Dandan;Zhang, Meng;Zhang, Xiaohua;Wang, Deguo
    • Journal of Veterinary Science
    • /
    • v.23 no.4
    • /
    • pp.51.1-51.10
    • /
    • 2022
  • Background: Due to the unavailability of an effective vaccine or antiviral drug against the African swine fever virus (ASFV), rapid diagnosis methods are needed to prevent highly contagious African swine fever. Objectives: The objective of this study was to establish the ladder-shape melting temperature isothermal amplification (LMTIA) assay for the detection of ASFV. Methods: LMTIA primers were designed with the p72 gene of ASFV as the target, and plasmid pUC57 was used to clone the gene. The LMTIA reaction system was optimized with the plasmid as the positive control, and the performance of the LMTIA assay was compared with that of the commercial real-time polymerase chain reaction (PCR) kit in terms of sensitivity and detection rate using 200 serum samples. Results: Our results showed that the LMTIA assay could detect the 104 dilution of DNA extracted from the positive reference serum sample, which was the same as that of the commercial real-time PCR kit. The coincidence rate between the two assays was 100%. Conclusions: The LMTIA assay had high sensitivity, good detection, and simple operation. Thus, it is suitable for facilitating preliminary and cost-effective surveillance for the prevention and control of ASFV.

Integrated RT-PCR Microdevice with an Immunochromatographic Strip for Colorimetric Influenza H1N1 virus detection

  • Heo, Hyun Young;Kim, Yong Tae;Chen, Yuchao;Choi, Jong Young;Seo, Tae Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.273-273
    • /
    • 2013
  • Recently, Point-of-care (POC) testing microdevices enable to do the patient monitoring, drug screening, pathogen detection in the outside of hospital. Immunochromatographic strip (ICS) is one of the diagnostic technologies which are widely applied to POC detection. Relatively low cost, simplicity to use, easy interpretations of the diagnostic results and high stability under any circumstances are representative advantages of POC diagnosis. It would provide colorimetric results more conveniently, if the genetic analysis microsystem incorporates the ICS as a detector part. In this work, we develop a reverse transcriptase-polymerase chain reaction (RT-PCR) microfluidic device integrated with a ROSGENE strip for colorimetric influenza H1N1 virus detection. The integrated RT-PCR- ROSGENE device is consist of four functional units which are a pneumatic micropump for sample loading, 2 ${\mu}L$ volume RT-PCR chamber for target gene amplification, a resistance temperature detector (RTD) electrode for temperature control, and a ROSGENE strip for target gene detection. The device was fabricated by combining four layers: First wafer is for RTD microfabrication, the second wafer is for PCR chamber at the bottom and micropump channel on the top, the third is the monolithic PDMS, and the fourth is the manifold for micropump operation. The RT-PCR was performed with subtype specific forward and reverse primers which were labeled with Texas-red, serving as a fluorescent hapten. A biotin-dUTP was used to insert biotin moieties in the PCR amplicons, during the RT-PCR. The RT-PCR amplicons were loaded in the sample application area, and they were conjugated with Au NP-labeled hapten-antibody. The test band embedded with streptavidins captures the biotin labeled amplicons and we can see violet colorimetric signals if the target gene was amplified with the control line. The off-chip RT-PCR amplicons of the influenza H1N1 virus were analyzed with a ROSGENE strip in comparison with an agarose gel electrophoresis. The intensities of test line was proportional to the template quantity and the detection sensitivity of the strip was better than that of the agarose gel. The test band of the ROSGENE strip could be observed with only 10 copies of a RNA template by the naked eyes. For the on-chip RT-PCR-ROSGENE experiments, a RT-PCR cocktail was injected into the chamber from the inlet reservoir to the waste outlet by the micro-pump actuation. After filling without bubbles inside the chamber, a RT-PCR thermal cycling was executed for 2 hours with all the microvalves closed to isolate the PCR chamber. After thermal cycling, the RT-PCR product was delivered to the attached ROSGENE strip through the outlet reservoir. After dropping 40 ${\mu}L$ of an eluant buffer at the end of the strip, the violet test line was detected as a H1N1 virus indicator, while the negative experiment only revealed a control line and while the positive experiment a control and a test line was appeared.

  • PDF

Combined Detection of Serum MiR-221-3p and MiR-122-5p Expression in Diagnosis and Prognosis of Gastric Cancer

  • Zhang, Yan;Huang, Huifeng;Zhang, Yun;Liao, Nansheng
    • Journal of Gastric Cancer
    • /
    • v.19 no.3
    • /
    • pp.315-328
    • /
    • 2019
  • Purpose: To investigate the clinical value of serum miR-221-3p and miR-122-5p expression levels in the diagnosis and prognosis of gastric cancer. Materials and Methods: Serum samples from 141 gastric cancer cases (gastric cancer group), 110 gastric polyps (gastric polyp group), and 75 healthy people (healthy control) were used to detect miR-221-3p and miR-122-5p expression using real-time reverse transcription polymerase chain reaction. Results: Serum miR-221-3p expression was significantly higher in the gastric cancer group than in the gastric polyp group, and it was significantly lower than that before operation. The miR-221-3p expression was significantly higher in the death group than in the survival group. The proliferation and migration ability significantly increased and the apoptosis rate significantly decreased by miR-221-3p transfection in gastric cancer cells. In contrast, the function of miR-122-5p in gastric cancer cells was opposite of miR-221-3p. Serum miR-221-3p expression was negatively correlated with that of miR-122-5p in gastric cancer. Serum miR-221-3p and miR-122-5p expressions were significantly correlated with the degree of differentiation, tumor, node, metastasis stage, lymph node metastasis, and invasion depth. miR-221-3p and miR-122-5p expression levels were independent prognostic factors for postoperative gastric cancer. In the diagnosis and predicting prognosis of gastric cancer, receiver operating characteristic analysis revealed that the area under curve of combined detection of serum miR-221-3p and miR-122-5p expression had a greater diagnostic effect than either single maker. Conclusions: The miR-221-3p and miR-122-5p are involved in the development of gastric cancer, and they have important clinical values in gastric cancer diagnosis and prognosis.

Rapid Detection of Enterotoxigenic Staphylococcus aureus by Polymerase Chain Reaction (중합효소 연쇄반응에 의한 식중독성 황색포도상구균의 신속한 검출)

  • Kim, Eun-Seon;Jhon, Deok-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.1001-1008
    • /
    • 1996
  • Staphylococcal food poisoning is the major cause of bacterial food poisoning occurring in this country. Therefore government regulates commercial foods through Official Dictionary of Food that there should be free of enterotoxigenic Staphylococcus aureus in Korean rice cakes, bread, and a box lunch. Since at least 5 days are required to identify the S. aureus by the official method in the Dictionary it is difficult to prevent the food poisoning and the investigation of the outbreaks. In this report an improved determination method of the S. aureus has been developed using polymerase chain reaction (PCR) technique. Sense and antisense primers for specific amplification of genes encoding staphylococcal enterotoxins were designed and synthesized for the PCR. Rapid chromosomal DNA isolation method was also developed from S. aureus using lysostaphin. The PCR condition was developed as follows. Reaction solution $(50\;{\mu}l)$ consisted of target DNA $2\;{\mu}l$ (about 20ng), 10X buffer $5\;{\mu}l$, primer 100pmole, dNTP (10 mM) $4\;{\mu}l$ and Taq DNA polymerase 2.5 unit in a thin-wall tube. Operation condition of the PCR was 5 min pre-denaturation at $94^{\circ}C$, 15 sec denaturation at $94^{\circ}C$, 15 sec annealing at $50^{\circ}C$, 20 sec extension at $72^{\circ}C$, and 5 min post-extension at $72^{\circ}C$, and 30 cycles of denaturation-annealing- extension. Using the PCR with Perkin Elmer GeneAmp PCR system 2400, types of enterotoxigenic S. aureus could be identified from Ddok or bread in a day.

  • PDF

Comparative Assessment of Diagnostic Performances of Two Commercial Rapid Diagnostic Test Kits for Detection of Plasmodium spp. in Ugandan Patients with Malaria

  • Bahk, Young Yil;Park, Seo Hye;Lee, Woojoo;Jin, Kyoung;Ahn, Seong Kyu;Na, Byoung-Kuk;Kim, Tong-Soo
    • Parasites, Hosts and Diseases
    • /
    • v.56 no.5
    • /
    • pp.447-452
    • /
    • 2018
  • Prompt diagnosis of malaria cases with rapid diagnostic tests (RDTs) has been widely adopted as an effective malaria diagnostic tool in many malaria endemic countries, primarily due to their easy operation, fast result output, and straightforward interpretation. However, there has been controversy about the diagnostic accuracy of RDTs. This study was conducted to evaluate the diagnostic performances of the 2 commercially available malaria RDT kits, RapiGEN Malaria Ag Pf/Pv (pLDH/pLDH) and Asan $EasyTest^{TM}$ Malaria Ag Pf/Pv (HRP-2/pLDH) for their abilities to detect Plasmodium species in blood samples collected from Ugandan patients with malaria. To evaluate the diagnostic performances of these 2 RDT kits, 229 blood samples were tested for malaria infection by microscopic examination and a species-specific nested polymerase chain reaction. The detection sensitivities for P. falciparum of Malaria Ag Pf/Pv (pLDH/pLDH) and Asan $EasyTest^{TM}$ Malaria Ag Pf/Pv (HRP-2/pLDH) were 87.83% and 89.57%, respectively. The specificities of the 2 RDTs were 100% for P. falciparum and mixed P. falciparum/P. vivax infections. These results suggest that the 2 RDT kits showed reasonable levels of diagnostic performances for detection of the malaria parasites from Ugandan patients. However, neither kit could effectively detect P. falciparum infections with low parasitaemia (<$500parasites/{\mu}l$).

Enhancing Internet of Things Security with Random Forest-Based Anomaly Detection

  • Ahmed Al Shihimi;Muhammad R Ahmed;Thirein Myo;Badar Al Baroomi
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.6
    • /
    • pp.67-76
    • /
    • 2024
  • The Internet of Things (IoT) has revolutionized communication and device operation, but it has also brought significant security challenges. IoT networks are structured into four levels: devices, networks, applications, and services, each with specific security considerations. Personal Area Networks (PANs), Local Area Networks (LANs), and Wide Area Networks (WANs) are the three types of IoT networks, each with unique security requirements. Communication protocols such as Wi-Fi and Bluetooth, commonly used in IoT networks, are susceptible to vulnerabilities and require additional security measures. Apart from physical security, authentication, encryption, software vulnerabilities, DoS attacks, data privacy, and supply chain security pose significant challenges. Ensuring the security of IoT devices and the data they exchange is crucial. This paper utilizes the Random Forest Algorithm from machine learning to detect anomalous data in IoT devices. The dataset consists of environmental data (temperature and humidity) collected from IoT sensors in Oman. The Random Forest Algorithm is implemented and trained using Python, and the accuracy and results of the model are discussed, demonstrating the effectiveness of Random Forest for detecting IoT device data anomalies.

Automatic On-Chip Glitch-Free Backup Clock Changing Method for MCU Clock Failure Protection in Unsafe I/O Pin Noisy Environment (안전하지 않은 I/O핀 노이즈 환경에서 MCU 클럭 보호를 위한 자동 온칩 글리치 프리 백업 클럭 변환 기법)

  • An, Joonghyun;Youn, Jiae;Cho, Jeonghun;Park, Daejin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.12
    • /
    • pp.99-108
    • /
    • 2015
  • The embedded microcontroller which is operated by the logic gates synchronized on the clock pulse, is gradually used as main controller of mission-critical systems. Severe electrical situations such as high voltage/frequency surge may cause malfunctioning of the clock source. The tolerant system operation is required against the various external electric noise and means the robust design technique is becoming more important issue in system clock failure problems. In this paper, we propose on-chip backup clock change architecture for the automatic clock failure detection. For the this, we adopt the edge detector, noise canceller logic and glitch-free clock changer circuit. The implemented edge detector unit detects the abnormal low-frequency of the clock source and the delay chain circuit of the clock pulse by the noise canceller can cancel out the glitch clock. The externally invalid clock source by detecting the emergency status will be switched to back-up clock source by glitch-free clock changer circuit. The proposed circuits are evaluated by Verilog simulation and the fabricated IC is validated by using test equipment electrical field radiation noise