• Title/Summary/Keyword: operating system kernel

Search Result 161, Processing Time 0.023 seconds

Large-Memory Data Processing on a Remote Memory System using Commodity Hardware (대용량 메모리 데이타 처리를 위한 범용 하드웨어 기반의 원격 메모리 시스템)

  • Jung, Hyung-Soo;Han, Hyuck;Yeom, Heon-Y.
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.9
    • /
    • pp.445-458
    • /
    • 2007
  • This article presents a novel infrastructure for large-memory database processing using commodity hardware with operating system support. We exploit inexpensive PCs and a high-speed network capable of Remote Direct Memory Access (RDMA) operations to build a new memory hierarchy between fast volatile memory and slow disk storage. The new memory hierarchy guarantees a reasonable response time, and its storage size enables us to run large-memory database systems with little performance degradation. The proposed architecture has two main components: (1) a remote memory system inside the Linux kernel to manage other computers' memory pages efficiently and (2) a remote memory pager responsible for manipulating remote read/write operations on remote memory pages. We insist that the proposed architecture is practical enough to support the rigorous demands of commercial in-memory database systems by demonstrating the performance of publicly available main-memory databases (e.g., MySQL) on our prototyped system. The experimental results show very interesting results from the TPC-C benchmark.

DEVS 형식론을 이용한 다중프로세서 운영체제의 모델링 및 성능평가

  • 홍준성
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1994.10a
    • /
    • pp.32-32
    • /
    • 1994
  • In this example, a message passing based multicomputer system with general interdonnedtion network is considered. After multicomputer systems are developed with morm-hole routing network, topologies of interconecting network are not major considertion for process management and resource sharing. Tehre is an independeent operating system kernel oneach node. It communicates with other kernels using message passingmechanism. Based on this architecture, the problem is how mech does performance degradation will occur in the case of processor sharing on multicomputer systems. Processor sharing between application programs is veryimprotant decision on system performance. In almost cases, application programs running on massively parallel computer systems are not so much user-interactive. Thus, the main performance index is system throughput. Each application program has various communication patterns. and the sharing of processors causes serious performance degradation in hte worst case such that one processor is shared by two processes and another processes are waiting the messages from those processes. As a result, considering this problem is improtant since it gives the reason whether the system allows processor sharingor not. Input data has many parameters in this simulation . It contains the number of threads per task , communication patterns between threads, data generation and also defects in random inupt data. Many parallel aplication programs has its specific communication patterns, and there are computation and communication phases. Therefore, this phase informatin cannot be obtained random input data. If we get trace data from some real applications. we can simulate the problem more realistic . On the other hand, simualtion results will be waseteful unless sufficient trace data with varisous communication patterns is gathered. In this project , random input data are used for simulation . Only controllable data are the number of threads of each task and mapping strategy. First, each task runs independently. After that , each task shres one and more processors with other tasks. As more processors are shared , there will be performance degradation . Form this degradation rate , we can know the overhead of processor sharing . Process scheduling policy can affects the results of simulation . For process scheduling, priority queue and FIFO queue are implemented to support round-robin scheduling and priority scheduling.

  • PDF

On Benchmarking of Real-time Mechanisms in Various Periodic Tasks for Real-time Embedded Linux (실시간 임베디드 리눅스에서 다양한 주기적 타스크의 실시간 메커니즘 성능 분석)

  • Koh, Jae-Hwan;Choi, Byoung-Wook
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.4
    • /
    • pp.292-298
    • /
    • 2012
  • It is a real-time system that the system correctness depends not only on the correctness of the logical result of the computation but also on the result delivery time. Real-time Operating System (RTOS) is a software that manages the time of a microprocessor to ensure that the most important code runs first so that it is a good building block to design the real-time system. The real-time performance is achieved by using real-time mechanisms through data communication and synchronization of inter-task communication (ITC) between tasks. Therefore, test on the response time of real-time mechanisms is a good measure to predict the performance of real-time systems. This paper aims to analysis the response characteristics of real-time mechanisms in kernel space for real-time embedded Linux: RTAI and Xenomai. The performance evaluations of real-time mechanism depending on the changes of task periods are conducted. Test metrics are jitter of periodic tasks and response time of real-time mechanisms including semaphore, real-time FIFO, Mailbox and Message queue. The periodicity of tasks is relatively consistent for Xenomai but RTAI reveals smaller jitter as an average result. As for real-time mechanisms, semaphore and message transfer mechanism of Xenomai has a superior response to estimate deterministic real-time task execution. But real-time FIFO in RTAI shows faster response. The results are promising to estimate deterministic real-time task execution in implementing real-time systems using real-time embedded Linux.

VirtAV: an Agentless Runtime Antivirus System for Virtual Machines

  • Tang, Hongwei;Feng, Shengzhong;Zhao, Xiaofang;Jin, Yan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5642-5670
    • /
    • 2017
  • Antivirus is an important issue to the security of virtual machine (VM). According to where the antivirus system resides, the existing approaches can be categorized into three classes: internal approach, external approach and hybrid approach. However, for the internal approach, it is susceptible to attacks and may cause antivirus storm and rollback vulnerability problems. On the other hand, for the external approach, the antivirus systems built upon virtual machine introspection (VMI) technology cannot find and prohibit viruses promptly. Although the hybrid approach performs virus scanning out of the virtual machine, it is still vulnerable to attacks since it completely depends on the agent and hooks to deliver events in the guest operating system. To solve the aforementioned problems, based on in-memory signature scanning, we propose an agentless runtime antivirus system VirtAV, which scans each piece of binary codes to execute in guest VMs on the VMM side to detect and prevent viruses. As an external approach, VirtAV does not rely on any hooks or agents in the guest OS, and exposes no attack surface to the outside world, so it guarantees the security of itself to the greatest extent. In addition, it solves the antivirus storm problem and the rollback vulnerability problem in virtualization environment. We implemented a prototype based on Qemu/KVM hypervisor and ClamAV antivirus engine. Experimental results demonstrate that VirtAV is able to detect both user-level and kernel-level virus programs inside Windows and Linux guest, no matter whether they are packed or not. From the performance aspect, the overhead of VirtAV on guest performance is acceptable. Especially, VirtAV has little impact on the performance of common desktop applications, such as video playing, web browsing and Microsoft Office series.

An Improved Index Structure for the Flash Memory Based F2FS File System

  • Kim, Yong-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.12
    • /
    • pp.1-8
    • /
    • 2022
  • As an efficient file system for SSD(Solid State Drive), F2FS is employed in the kernel of Linux operating system. F2FS applies various methods to improve performance by reflecting the characteristics of flash memory. One of them is improvement of the index structure that contains addresses of data blocks for each file. This paper presents a method for further improving performance by modifying the index structure of F2FS. F2FS manages all index blocks as logical numbers, and an address mapping table is used to find the physical block addresses of index blocks on flash memory. This paper shows performance improvement by applying logical numbers to the last level index blocks only. The count of mapping table search for a data block access is reduced to 1~2 from 1~4.

Performance Evaluation and Analysis on Single and Multi-Network Virtualization Systems with Virtio and SR-IOV (가상화 시스템에서 Virtio와 SR-IOV 적용에 대한 단일 및 다중 네트워크 성능 평가 및 분석)

  • Jaehak Lee;Jongbeom Lim;Heonchang Yu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.2
    • /
    • pp.48-59
    • /
    • 2024
  • As functions that support virtualization on their own in hardware are developed, user applications having various workloads are operating efficiently in the virtualization system. SR-IOV is a virtualization support function that takes direct access to PCI devices, thus giving a high I/O performance by minimizing the need for hypervisor or operating system interventions. With SR-IOV, network I/O acceleration can be realized in virtualization systems that have relatively long I/O paths compared to bare-metal systems and frequent context switches between the user area and kernel area. To take performance advantages of SR-IOV, network resource management policies that can derive optimal network performance when SR-IOV is applied to an instance such as a virtual machine(VM) or container are being actively studied.This paper evaluates and analyzes the network performance of SR-IOV implementing I/O acceleration is compared with Virtio in terms of 1) network delay, 2) network throughput, 3) network fairness, 4) performance interference, and 5) multi-network. The contributions of this paper are as follows. First, the network I/O process of Virtio and SR-IOV was clearly explained in the virtualization system, and second, the evaluation results of the network performance of Virtio and SR-IOV were analyzed based on various performance metrics. Third, the system overhead and the possibility of optimization for the SR-IOV network in a virtualization system with high VM density were experimentally confirmed. The experimental results and analysis of the paper are expected to be referenced in the network resource management policy for virtualization systems that operate network-intensive services such as smart factories, connected cars, deep learning inference models, and crowdsourcing.

Real-time Task Scheduling Algorithm using Multi-dimensional Methodology (다차원 기법을 이용한 실시간 태스크 스케줄링 알고리즘)

  • Cho, Moon-Haeng;Lee, Cheol-Hoon
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.810-815
    • /
    • 2009
  • In recent years, embedded systems such as cellular phones, Portable Multimedia Player, intelligent appliance, automobile engine control are reshaping the way people live, work, and play. Thereby, applications for embedded systems become increasingly sophisticated and complicated, such embedded computing platforms must use real-time operating systems (RTOSs) with time determinism. These RTOSs must not only provide predictable services but must also be efficient and small in size and it's kernel services should also be deterministic by specifying how long each service call will take to execute. Having this information allows the application developers to better plan their real-time application software so as not to miss the deadline of each task. In this paper, we present the complete generalized algorithm using multi-dimensional methodology to determine the highest priority in the ready list with 2r levels of priorities for an arbitrary integer number of r.

  • PDF

Task Management and Garbage Collection Execution Control Method for Providing Real-time Performance to Android (안드로이드에 실시간 성능 제공을 위한 태스크 관리 및 가비지컬렉션 실행 제어 방법)

  • Cho, Kyung-Yeon;Jo, Han-Moo;Lee, Jeong-Guk;Seo, Min-Won;Lee, Sang-Gil;Lee, Cheol-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.3
    • /
    • pp.101-113
    • /
    • 2018
  • Systems such as military inspection equipment which it is important to acquire and evaluate data in real-time should be able to real-time processing at the operating system level. As technology advances, there is a demand for replacing existing equipment with mobile device, but mobile devices with Android are not suitable for systems requiring real-time performance. On Android, garbage collection ensures free memory, while other tasks are interrupted while this task is performed, which cannot guarantee periodicity of particular tasks. In this paper, we designed and implemented a structure to control execution garbage collection of Android to solve this problem. Real-time performance is ensured by controlling garbage collection during the time required for real-time operation, and RTiK(Real-Time implanted Kernel) is applied to ensure real-time performance on Android. In order to evaluate the performance, we measured the call period of the 5ms period task, and, only 34.31% of the task was guaranteed before the control, but the task period of 98.18% was satisfied through control, providing real-time performance to Android.

Analysis of Performance Interference in a KVM-virtualized Environment in the Aspect of CPU Scheduling (KVM 기반 가상화 환경에서 CPU 스케줄링 관점으로 본 Network I/O 성능간섭 현상 분석)

  • Kang, Donghwa;Lee, Kyungwoon;Park, Hyunchan;Yoo, Chuck
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.9
    • /
    • pp.473-478
    • /
    • 2016
  • Server virtualization provides abstraction of physical resources to users and thus accomplishes high resource utilization and flexibility. However, the characteristics of server virtualization, such as the limited number of physical resources shared by virtual machines, can cause problems, mainly performance interference. The performance interference is caused by the fact that the CPU scheduler running on the host operating system schedules virtual machines without considering the characteristics of the virtual machine's internal process. To address performance interference, a number of research activities to improve performance interference have been conducted, but do not deal with the fundamental analysis of performance interference. In this paper, in order to analyze the cause of performance interference, we carry out profiling in a variety of scenarios in a virtualized environment based on KVM. As a result, we analyze the phenomenon of the performance interference in terms of CPU scheduling and propose an efficient scheduling solution.

Hardware Design of Bilateral Filter Based on Window Division (윈도우 분할 기반 양방향 필터의 하드웨어 설계)

  • Hyun, Yongho;Park, Taegeun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.12
    • /
    • pp.1844-1850
    • /
    • 2016
  • The bilateral filter can reduce the noise while preserving details computing the filtering output at each pixels as the average of neighboring pixels. In this paper, we propose a real-time system based on window division. Overall performance is increased due to the parallel architectures which computes five rows in the kernel window simultaneously but with pipelined scheduling. We consider the tradeoff between the filter performance and the hardware cost and the bit allocation has been determined by PSNR analysis. The proposed architecture is designed with verilogHDL and synthesized using Dongbu Hitek 110nm standard cell library. The proposed architecture shows 416Mpixels/s (397fps) of throughput at 416MHz of operating frequency with 132K gates.