• Title/Summary/Keyword: operating current

Search Result 3,342, Processing Time 0.034 seconds

Study of Energy Margin and Operating Current Margin of KSTAR Cable-In-Conduit Conductor (KSTAR 초전도 자석의 운전 안정성에 대한 연구)

  • Lee, H.J.;Oh, Y.K.;Kim, W.C.;Park, S.H.;Kim, H.C.;Kim, K.
    • Progress in Superconductivity
    • /
    • v.8 no.2
    • /
    • pp.193-201
    • /
    • 2007
  • Since the margins for the minimum quench energy and for the operating current in the superconducting magnet determine the operating regime of the magnet, a thermal stability analysis for the KSTAR superconducting magnet system is performed using 1-D Gandalf code. The result shows that the minimum quench energy is about 500 mJ/cc and the operating current margin is about 70 %. These values are larger than those of the KSTAR design criteria and the KSTAR superconducting magnet system can be operated stably under various experimental environments.

  • PDF

The Analysis of Railroad Operating Costs in Korean Railroad Projects

  • SungWook KANG;DongHee KIM;GyuBae KIM
    • East Asian Journal of Business Economics (EAJBE)
    • /
    • v.12 no.1
    • /
    • pp.35-42
    • /
    • 2024
  • Purpose: A railroad project is a complex system with large construction costs in the initial stage and ongoing operating costs over its lifecycle. Current railroad projects tend to be based on construction options, which leads to huge deficiencies in operating costs. This phenomenon results from a lack of appropriate tools to accurately estimate a railroad project's lifecycle costs. This study attempts to analyze the major components of railroad operating costs and to propose a decision-making system for analyzing the long-term lifecycle costs of railroad projects. Research design, data and methodology: We review the literature and analyze the current status of railroad operating costs in Korea and overseas. Based on previous projects, a framework for project options and operating costs is proposed. The framework is applied to actual railroad projects to demonstrate the validity of the model. Results: Case analysis shows that our framework is comprehensive in analyzing the primary aspects of railroad operating costs and plays an effective role in choosing various railroad project options. This study points out that the railway project operates inefficiently because estimating long-term costs without reflecting specific project options causes many errors. Conclusions: A major contribution of this study is the development of an improved framework for accurately estimating operating costs and providing policymakers and engineering firms with a holistic decision support system. Detailed components in estimating operating costs of the railroad business are discussed. And we present a decision-making tool that policymakers and private businesses can use in planning the railroad business.

A Study on Stability Criterion for Cryocooler Operating HTS Coils (냉동기운전 고온초전도코일의 안전성평가기준에 관한 연구)

  • Ishiyama, Atsushi;Kim, Seok-Beom;Han, Kyung-Hee
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.7
    • /
    • pp.317-323
    • /
    • 2001
  • We investigated the stability of cryocooler-cooled high-temperature superconducting (HTS) coils by using a computer program based on FEM. In this study, the current at which "thermal runaway" occurs, which depends on the relationship between the cooling power of the cryocooler and the heat generation in HTS coils, was adopted as a stability criterion of cryocooler operating HTS coils. It was shown that cryocooler-cooled HTS coil was stable in operating current above the critical current from the numerical analysis results by HTS model coil. And also, if we efficiently remove the heat generation from HTS coils by potimizing heat drain, the ramp-rate limitation can be mitigated because the effect of AC loss by the current rise was too small. Furthermore, in the case of pulsed operation; the HTS model coil is ramped from zero to the peak value in one second and back to zero current in one second, such as the operation of SMES device, the peak value of poerating current is 1.5-2 times greater than that of the thermal runaway current.

  • PDF

Effect of Non-lattice Oxygen Concentration on Non-linear Interfacial Resistive Switching Characteristic in Ultra-thin HfO2 Films

  • Kim, Yeong-Jae;Kim, Jong-Gi;Mok, In-Su;Lee, Gyu-Min;Son, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.359-360
    • /
    • 2013
  • The effect of electrode and deposition methods on non-linear interfacial resistive switching in HfO2 based $250{\times}250$ nm2 cross-point device was studied. HfO2 based device has the interfacial resistive switching properties of non-linearity and self-compliance current switching. The operating current in HfO2 based device was increased with negatively increasing the heat of formation energy in top electrode. Also, it was investigated that the operating current in HfO2 based device was changed with deposition methods of O3 reactant ALD, H2O reactant ALD and dc reactive sputtering, resulting the magnitude of the operating current and on/off ratio in order of HfO2 films deposited by dc reactive sputtering, H2O reactant ALD, and O3 reactant ALD. To investigate the effect of electrode and deposition methods on operating current of non-linear interfacial resistive switching in the cross-point device, X-ray photoelectron spectroscopy was measured. Through the analysis of O 1s spectra, non-lattice oxygen concentration, which is closely related to oxygen vacancies, was increased in order of Pt, TiN, and Ti top electrodes and in order of O3 reactant ALD, H2O reactant ALD, and O3 reactant ALD, and dc reactive sputtering deposition method. From all results, non-lattice oxygen concentration in ultra-thin HfO2 films play a crucial role in the operating current and memory states (LRS & HRS) in the non-linear interfacial resistive switching.

  • PDF

Study on the Operating Characteristics of High Voltage Impulse Track Circuit (고전압 임펄스궤도회로의 동작특성 연구)

  • Lee, Tae-Hoon;Park, Ki-Bum;Jeon, Yong-Joo;Ryu, Young-Tae
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1279-1284
    • /
    • 2008
  • This paper presents the operating characteristic of high voltage impulse(HVI) track circuit owing to the ill-contact of impedance bond lead wire. The characteristic operations of the track include rail voltage and current. Measurements are carried out using oscilloscope with current probe and it analyzed the abnormal operation due to connector of protective wire. Finally, suitable track circuit is proposed for conventional line, and operating characteristic of HVI track circuit is affected by bypass circuit.

  • PDF

Characteristic ependences of High Power Semiconductor Laser on AR Coating (AR Coating에 따른 고출력 반도체 레이저의 특성변화)

  • 오윤경;곽계달
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.11
    • /
    • pp.29-34
    • /
    • 1995
  • Mirror coating is applied to laser facets to improve properties of edge emitting laser diodes. In this experiment, InGaAsP/GaAs high power laser diodes were studied with respect to different degrees of anti-reflective coating. Sputterred $Al_{2}$O$_{3}$ was used as the coating material and the HR coating was kept constant at 90%. Threshold current density, differential quantum efficiency, emission wavelength and the operating current at 500mW were measured for a range of AR coating and compared with theoretically calculated values; that showed good agreements. Precise wavelength control is important for laser diodes for solid state pumping because of small absorption bandwidth. In addition, since these lasers operate under CW condition, a lowest possible operating current for a given power is desired in order to minimize the heat produced. From the results of this experiment, we were able to obtain a optimum range of AR coatings for minimum operating current. The wavelength can be varied up to 4nm within this range.

  • PDF

Performance Analysis of SOFC/MGT Hybrid System

  • Kim, Jae-Hwan;Suzuki, Kenjiro
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.703-707
    • /
    • 2001
  • A performance analysis of a SOFC/MGT hybrid system has been carried out for concept design. Thermo-dynamic models for each component being able to describe electrochemical characteristics and heat and mate-rial balance are proposed. Estimated is the power capacity of a SOFC suitable for the hybrid operation with a 5kW class MGT. Effects of current density and operating pressure are also investigated. Electric efficiency showed weak dependence on operating pressure and current density. It is desirable that the SOFC operates at high current density in manufacturing cost's point of view though operating with high current density slightly decreases the electric efficiency find specific power.

  • PDF

A Study on the Operating Characteristics of Molded Case Circuit Breakers according to Temperature Rise (온도상승에 따른 배선용 차단기의 동작특성에 관한 연구)

  • Jung, Da-Woon;Kim, Jae-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.5
    • /
    • pp.8-13
    • /
    • 2015
  • Molded Case Circuit Breakers (MCCBs) are typically used to provide over current protection for electrical safety caused by short circuit faults and overloads in indoor low voltage power systems. The MCCB automatically connects and disconnects loads from the electrical source when the current reaches a value and duration that will cause an excessive. However, the MCCB sometimes is not interrupted due to a malfunction, nuisance tripping, or in a fire. Ensuring electrical safety is very important in a indoor low voltage power system. This paper presents the operating characteristics of MCCBs according to a temperature rise from room temperature to 160 degrees Celsius delivered by a radiant panel heater. The ABS 54c(rated current: 30A) of the hydraulic magnetic trip type was used in the experiments. The signals of temperature, voltage, and current were measured using the high accuracy Signal Conditioning Extensions for Instrumentation (SCXI) measurement system with the LabVIEW program manufactured by National Instruments. The operating characteristics were measured as functions of current amplitude and ramp-up rate. The MCCB tripping time decreased as a result of increasing current amplitude and ramp-up rate under a temperature rise condition, because the temperature and level of the current are directly proportional to the tripping time. Additionally, an instantaneous operation was observed after 8 times of the rated current, and the MCCB began to melt a surface temperature of around 300 degrees Celsius of. The experimental results coincided well with the operating curve.

Experiment of harmonic components in voltage on high temperature superconducting wire carrying an AC

  • Lee, Jiho;Ko, Tae Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.1
    • /
    • pp.51-54
    • /
    • 2013
  • This paper deals with harmonic components of the voltage on high temperature superconducting wire carrying an alternating current. HTS wire is used to manufacture superconducting power applications carrying an alternating current. Typically, international standard, IEC 61788-3 is used for critical current measurement. Thus, it is not ideal that critical current criteria in dc are adapted to superconducting power devices to decide the operating current of the devices. In this paper, we confirmed odd harmonic voltage on HTS wires carrying an AC. The ratio between harmonic components and fundamental component can be significant clues to decide the critical current criteria for HTS wire and its power applications in AC circumstance.

The Optimum Shape of Taper HTS Current Lead Having Partial Current Sharing Region (일부 전류분류 영역을 갖는 테이퍼 형상 전류도입선의 최적 형상에 대한 연구)

  • 허광수;설승윤
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.185-189
    • /
    • 2003
  • The purpose of this study is to obtain the optimal operating condition of conduction cooled taper shape high-temperature superconductor (HTS) current lead operated in current sharing mode. In our previous study, we discovered that the optimal operating condition of constant cross-section area HTS current lead is in the current sharing state, and in optimal condition, the temperature gradient at warm end is not zero. The analysis result of taper HTS current lead is quiet similar to the constant area HTS current lead. The minimum dissipation of taper HTS current lead is not influenced by taper angle, however the optimal operation condition is varied with taper angle.

  • PDF