• Title/Summary/Keyword: operating conditions

Search Result 5,040, Processing Time 0.038 seconds

Experiments of dimethyl ether autothermal reforming optimization (디메틸에테르(DME) 자열개질 운전조건 최적화에 관한 연구)

  • Choi, Seunghyeon;Bae, Joongmyeon;Kim, Taehun;Jang, Duckjin;Kim, Doyoun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.97.1-97.1
    • /
    • 2011
  • Dimethyl ether (DME) is an attractive fuel as a hydrogen carrier for mobile PEMFC applications. However, its reforming technologies are rarely studied especially by using autothermal reforming (ATR) method. This work explored the impact of operating conditions to the performance of DME ATR. Temperature, Steam to carbon ratio(SCR), Oxygen to carbon ratio(OCR) and Gas hourly space velocity(GHSV) were considered as the operating conditions. As results, conversion efficiency was increased as the temperature increased, but saturated around $700^{\circ}C$. There was no significant effect of SCR on conversion efficiency, but high SCR led reactions in endothermic manner. High OCR substantially suppressed conversion efficiency, but it helped to sustain the temperature by stimulating exothermic reactions. Conversion efficiency was decreased as GHSV increased. The optimized operating conditions was suggested: $700^{\circ}C$, SCR of 1.5, OCR of 0.45 and GHSV below 15000/h and conversion efficiency was ~85% at the conditions.

  • PDF

Experimental Validation of a Direct Methanol Fuel Cells(DMFCs) model with a Operating Temperatures and Methanol Feed Concentrations (직접메탄올 연료전지의 농도 및 온도변화에 따른 실험적 검증)

  • Kang, Kyungmun;Ko, Johan;Lee, Giyong;Ju, Hyunchul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.125.2-125.2
    • /
    • 2010
  • In this paper, both theoretical and experimental investigations have been performed to examine the effects of key operating parameters on the cell performance of a DMFCs (i.e., methanol feed concentration and operating temperature). For experiment, the membrane electrode assemblies (MEAs) were prepared using a conventional MEA fabrication method based on a catalyst coated electrode (CCE) and tested under various cell temperatures and methanol feed concentrations. The polarization curve measurements were conducted using in-house-made $25cm^2$ MEAs. The voltage-current density data were collected under three different cell temperatures ($50^{\circ}C$, $60^{\circ}C$, and $70^{\circ}C$) and four different methanol feed concentrations (1 M, 2 M, 3 M, and 4 M). The experimental data indicate that the measured I-V curves are significantly altered, depending on these conditions. On the other hand, previously developed one-dimensional, two-phase DMFC model is simulated under the same operating conditions used in the experiments. The model predictions compare well with the experimental data over a wide range of these operating conditions, which demonstrates the validity and accuracy of the present DMFC model. Furthermore, both simulation and experimental results exhibit the strong influences of methanol and water crossover rates through the membrane on DMFC performance and I-V curve characteristics.

  • PDF

A Study on Estimating Construction Equipment Annual Standard Operating Hours (건설기계 연간표준가동시간 산정에 관한 연구)

  • Lee, Joong-Seok;Huh, Young-Ki;Ahn, Bang-Ryul
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.1
    • /
    • pp.37-42
    • /
    • 2008
  • As use of construction equipment has been increasing continuingly, the proportion of equipment expense to the total construction cost has become higher. However, there is a difference between the equipment expenses section in 'Poom-Sam' and practical data, because 'Poom-sam' does not consider non-working days due to weather conditions, legal holidays and management conditions. Therefore, 'Poom-Sam' does not present a reasonable standard for estimating construction equipment expenses. In this study, to estimate realistic construction equipment operating hours, firstly, construction equipment was classified according to work, and weather conditions, in which each work could not be executed, were established. Then, weather data on Seoul and Busan($2004{\sim}2006$) and legal holidays were analyzed to suggest annual standard operating hours. The annual standard operating hours of earthmoving & excavating, compaction, and drilling equipment was estimated to be 1,430 hours, and lifting equipment, concrete paving equipment, asphalt paving equipment, concrete equipment, and crushing & conveying equipment were estimated to be 2,124 hours, 1,156hours, 1,188hours, 1,688hours, and 2,152hours respectively.

Development of Autonomous Reconnaissance Flight Simulation for Unmanned Aircraft to Derive Flight Operating Condition (자율정찰비행 무인항공기의 비행운영조건 고찰을 위한 비행시뮬레이션 개발)

  • Seok, Min Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.4
    • /
    • pp.266-273
    • /
    • 2019
  • The efficiency and effectiveness of mission performance can be greatly changed according to the operating conditions such as the number of manned aircraft, flight altitude, and so on, in performing search and reconnaissance missions using a large number of small reconnaissance unmanned aerial vehicles. However, it is not easy to determine which operating conditions are most reasonable. Therefore, in this study, we developed an unmanned airplane flight simulation that can detect and identify the target while avoiding collision according to autonomous flight, suggesting a way to derive operating conditions when operating a large number of unmanned aerial vehicles.

Operating condition optimization of liquid metal heat pipe using deep learning based genetic algorithm: Heat transfer performance

  • Ik Jae Jin;Dong Hun Lee;In Cheol Bang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2610-2624
    • /
    • 2024
  • Liquid metal heat pipes play a critical role in various high-temperature applications, with their optimization being pivotal to achieving optimal thermal performance. In this study, a deep learning based genetic algorithm is suggested to optimize the operating conditions of liquid metal heat pipes. The optimization performance was investigated in both single and multi-variable optimization schemes, considering the operating conditions of heat load, inclination angle, and filling ratio. The single-variable optimization indicated reasonable performance for various conditions, reinforcing the potential applicability of the optimization method across a broad spectrum of high-temperature industries. The multi-variable optimization revealed an almost congruent performance level to single-variable optimization, suggesting that the robustness of optimization method is not compromised with additional variables. Furthermore, the generalization performance of the optimization method was investigated by conducting an experimental investigation, proving a similar performance. This study underlines the potential of optimizing the operating condition of heat pipes, with significant consequences in sectors such as high temperature field, thereby offering a pathway to more efficient, cost-effective thermal solutions.

Method to Estimate Expected Sag Frequency Considering the Operating Condition of Power System (전력계통 운전조건을 고려한 순간전압강하 추계 방법)

  • Son, Jeongdae;Lee, Kyebyung;Park, Chang-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.3
    • /
    • pp.382-387
    • /
    • 2016
  • This paper deals with the assessment of voltage sags regarding the variation of system operating conditions. In general, voltage sag assessment is performed by assuming the constant operating condition throughout the year. However, the assumption can lead to assessment errors in case of considerable changes of system operation condition. This paper presents a method to estimate ESF(expected sag frequency) considering the operating conditions according to the changes of power demand throughout the year.

A Basic Study for Tuning Power System Stabilizer Part I : Analyzing the Torque Characteristics of Power System Corresponding to Operating Conditions (PSS 튜닝을 위한 기본 연구 Part I : 계통 운전조건에 대한 토오크 특성분석)

  • 김동준;문영환;김태균
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.9
    • /
    • pp.1064-1072
    • /
    • 1999
  • The basic concepts, which are related to the PSS tuning conditions and performance conditions for the safe of determination of PSS gain and compensation of phasor lagging, are thoroughly investigated in this first part. The performance conditions, where the power system has the lowest inherent damping torque and PSS should provide maximum damping torque, are examined by analysing synchronizing torque and damping torque supplied by the voltage control loop at the oscillation frequency. PSS tuning conditions are also investigated by observing the phasor lagging and the gain, resulted from power system-generator-excitation system depending on operating conditions, such as generator active power, reactive power, transmission impedance and AVR gain. The basic concepts developed in this PartImake it possible to lay foundation for the discussion of PSS tuning in Part II.

  • PDF

What Motivates Users to Upgrade the Operating Systems? (운영체제 업그레이드 의도에 관한 연구: 마이크로소프트 윈도우 사용자를 중심으로)

  • Kim, Jeahyun;Kim, Jongki
    • Informatization Policy
    • /
    • v.23 no.1
    • /
    • pp.38-55
    • /
    • 2016
  • This study discusses the operating systems upgrade to motivation of windows users. To discuss this issues, research hypotheses were set based on Unified Theory of Acceptance Use of Technology(UTAUT) and Theory of Reasoned Action(TRA). The data were collected from undergraduate students. Total of 199 data were used for the analysis. The results of the analysis were summarized into two ways. first, performance expectancy and effort expectancy has a positive influence on attitude towards upgrade the operating systems. Second, social influence, facilitating conditions, and attitude had a positive influence on intention towards upgrade the operating systems. Thus, when users perceived a high degree of performance expectancy, effort expectancy, social influence, and facilitating conditions towards upgrade the operating systems, they evaluated more positively the upgrade the operating systems.

Scenario based optimization of a container vessel with respect to its projected operating conditions

  • Wagner, Jonas;Binkowski, Eva;Bronsart, Robert
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.496-506
    • /
    • 2014
  • In this paper the scenario based optimization of the bulbous bow of the KRISO Container Ship (KCS) is presented. The optimization of the parametrically modeled vessel is based on a statistically developed operational profile generated from noon-to-noon reports of a comparable 3600 TEU container vessel and specific development functions representing the growth of global economy during the vessels service time. In order to consider uncertainties, statistical fluctuations are added. An analysis of these data lead to a number of most probable upcoming operating conditions (OC) the vessel will stay in the future. According to their respective likeliness an objective function for the evaluation of the optimal design variant of the vessel is derived and implemented within the parametrical optimization workbench FRIENDSHIP Framework. In the following this evaluation is done with respect to vessel's calculated effective power based on the usage of potential flow code. The evaluation shows, that the usage of scenarios within the optimization process has a strong influence on the hull form.

Experimental Analyses of Cell Voltages for a Two-cell PEM Stack Under Various Operating Conditions

  • Park, Sang-Kyun;Choi, Jae-Hyuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.7
    • /
    • pp.881-890
    • /
    • 2011
  • Analyses of performance and behavior of the individual PEM fuel cells (PEMFC) under different operating conditions are of importance optimally to design and efficiently to operate the stack. The paper focuses on experimental analyses of a two-cell stack under different operating conditions, which performance and behavior are measured by the voltage of a cell as well as the stack. Experimental parameters include stoichiometric ratio, temperature of the air supplied under different working stack temperatures and loads. Results showed that the cell voltages are dominantly influenced by the temperature of the air supplied among others. In addition, an inherent difference between the first and the second cell voltage exists because of the tolerances of the cell components and the resulting different over-potentials at different equilibrium states. Furthermore, it is shown that the proton conductivity in the membranes conditioned by the humidity in the cathode channel highly affects the voltage differences of the two cells.