• Title/Summary/Keyword: operating algorithm

Search Result 1,724, Processing Time 0.026 seconds

Optimum Design of Latch Position and Latch Length on Operating Mechanism of a Circuit Breaker using ADAMS and VisualDOC (회로차단기 조작기구의 래치 위치 및 길이 최적설계)

  • Cha, Hyun Kyung;Jang, Jin Seok;Yoo, Wan Suk;Sohn, Jeong Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.11
    • /
    • pp.1215-1220
    • /
    • 2014
  • Breaking time is an important performance indicator of a circuit breaker. Thus, the operating mechanism of the circuit breaker should be optimized for reducing the breaking time. The operating mechanism in a gas circuit breaker is made up of several latches. Specifically, the geometry and relative positions of latches influence the dynamic behaviors of the operating mechanism. In this study, a three-stage latch operating mechanism is analyzed on the basis of the verified multibody dynamics model constructed using the MSC.ADAMS program. The relative positions and lengths of latches are selected as design variables. The dominant design variables are selected by a design study. Optimization is performed using a genetic algorithm (GA). The study results demonstrate that the performance of the circuit breaker improves by about 22.5.

A genetic algorithm for determining the optimal operating policies in an integrated- automated manufacturing system (통합자동생산시스템에서 최적운영방안 결정을 위한 유전자 알고리즘의 개발)

  • 임준목
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.4 no.2
    • /
    • pp.62-72
    • /
    • 1999
  • We consider a Direct Input Output Manufacturing System(DIOMS) which has a munber of machine centers placed along a built-in Automated Storage/Retrieval System(AS/RS). The Storage/Retrieval(S/R) machine handles parts placed on pallets for the machine centers located at either one or both sides of the AS/RS. This paper deals with the operational aspect of DIOMS and determines the optimal operating policy by combining computer simulation and genetic algorithm. The operational problem includes: input sequencing control, dispatching rule of the S/R machine, machine center-based part type selection rule and storage assignment policy. For each operating policy, several different policies are considered based on the known research results. In this paper, using the computer simulation and genetic algorithm we suggest a method which gives the optimal configuration of operating policies within reasonable computation time.

  • PDF

Application of operating vehicle load to structural health monitoring of bridges

  • Rafiquzzaman, A.K.M.;Yokoyama, Koichi
    • Smart Structures and Systems
    • /
    • v.2 no.3
    • /
    • pp.275-293
    • /
    • 2006
  • For health monitoring purpose usually the structure is instrumented with a large scale and multichannel measurement system. In case of highway bridges, operating vehicle could be utilized to reduce the number of measuring devices. First this paper presents a static damage detection algorithm of using operating vehicle load. The technique has been validated by finite element simulation and simple laboratory test. Next the paper presents an approach of using this technique to field application. Here operating vehicle load data has been used by instrumenting the bridge at single location. This approach gives an upper hand to other sophisticated global damage detection methods since it has the potential of reducing the measuring points and devices. It also avoids the application of artificial loading and interruption of any traffic flow.

The Neural-Fuzzy Control of a Transformer Cooling System

  • Lee, Jong-Yong;Lee, Chul
    • International Journal of Advanced Culture Technology
    • /
    • v.4 no.2
    • /
    • pp.47-56
    • /
    • 2016
  • In transformer cooling systems, oil temperature is controlled through the use of a blower and oil pump. For this paper, set-point algorithms, a reset algorithm and control algorithms of the cooling system were developed by neural networks and fuzzy logics. The oil inlet temperature was set by a $2{\times}2{\times}1$ neural network, and the oil temperature difference was set by a $2{\times}3{\times}1$ neural network. Inputs used for these neural networks were the transformer operating ratio and the air inlet temperature. The inlet set temperature was reset by a fuzzy logic based on the transformer operating ratio and the oil outlet temperature. A blower was used to control the inlet oil temperature while the oil pump was used to control the oil temperature difference by fuzzy logics. In order to analysis the performance of these algorithms, the initial start-up test and the step change test were performed by using the dynamic model of a transformer cooling system. Test results showed that algorithms developed for this study were effective in controlling the oil temperature of a transformer cooling system.

A Transformer protective Relaying Algorithm Based on Increment of Flux Linkages (쇄교자속비를 이용한 변압기 보호 알고리즘)

  • Kang, Y.C.;Lee, B.E.;Jin, E.S.;Won, S.H.;Lim, U.J.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.53-55
    • /
    • 2003
  • This paper propose a transformer protective relaying algorithm based on the increment of flux linkages (RIFL) of the Primary and secondary windings. The RIFL is equal to the turn ratio for all operating conditions except an internal faults. For a single-phase transformer and three-phase Y-Y transformer, the increments of flux linkages are calculated and their ratios are compared with the turn ratio. For a three-phase Y-$\triangle$ transformer, the difference of the increments of flux linkages are calculated to use the line currents instead of the delta winding currents, which are practically unavailable. Their ratios are compared with the turn ratio. The results of various tests show that the algorithm successfully discriminates internal faults from normal operation conditions such as magnetic inrush and overexcitation. The algorithm can not only detect internal winding faults, but reduce the relay's operating time.

  • PDF

Optimal Long-term Transmission Planning Algorithm using Non-linear Branch-and-bound Method (비선형 분산안전법을 이용한 최적장기송전계률 알고리)

  • 박영문;신중린
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.5
    • /
    • pp.272-281
    • /
    • 1988
  • The problem of optimal transmission system planning is to find the most economical locations and time of transmission line construction under the various constraints such as available rights-of-way, finances, the technical characteristics of power system, and the reliability criterion of power supply, and so on. In this paper the constraint of right-of-way is represented as a finite set of available rights-of-way. And the constructed for a unit period. The electrical constraints are represented in terms of line overload and steady state stability margin. And the reliability criterion is dealt with the suppression of failure cost and with single-contingency analysis. In general, the transmission planning problem requires integer solutions and its objective function is nonlinear. In this paper the objective function is defined as a sum of the present values of construction cost and the minimum operating cost of power system. The latter is represented as a sum of generation cost and failure cost considering the change of yearly load, economic dispatch, and the line contingency. For the calculation of operating cost linear programming is adopted on the base of DC load flow calculation, and for the optimization of main objective function nonlinear Branch-and-Bound algorithm is used. Finally, for improving the efficiency of B & B algorithm a new sensitivity analysis algorithm is proposed.

Optimum Control Period and Perturbation Voltage for PV-MPPT Controller Considering Real Wether Condition (실제 날씨를 고려한 PV-MPPT 제어기의 최적 주기와 변량전압)

  • Ryu, Danbi;Kim, Yong-Jung;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.1
    • /
    • pp.1-5
    • /
    • 2020
  • Solar power generation systems require maximum power point tracking (MPPT) control to operate PV panels at their maximum power point (MPP). Most conventional MPPT algorithms are based on the slope-tracking concept. A typical slope-tracking method is the perturb and observe (P&O) algorithm. The P&O algorithm measures the current and voltage of a PV panel to find the operating point of the voltage at which the calculated power is maximized. However, the measurement error of the sensor causes irregularity in the calculation of the generated power and voltage control. This irregularity leads to the problem of not finding the correct MPP operating point. In this work, the power output of a PV panel based on the P&O algorithm is simulated by considering the insolation profiles from typical clear and cloudy weather conditions and the errors of current and voltage sensors. Simulation analysis suggests the optimal control period and perturbation voltage of MPPT to maximize its target efficiency under real weather conditions with sensor tolerance.

A Three-Winding Transformer Protective Relaying Algorithm Based on Flux Linkages Ratio (쇄교자속비를 이용한 3권선 변압기 보호 알고리즘)

  • Kang, Y.C.;Lee, B.E.;Jin, E.S.;Won, S.H.;Lim, U.J.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.341-344
    • /
    • 2003
  • This paper proposes a tree-winding transformer protective relaying algorithm based on the ratio of increment of flux linkages (RIFL). The RIFL of the two windings is equal to the turns ratio for all operating conditions except an internal faults. For a single-phase transformer and three-phase transformer containing the wye-connected windings, the increments of flux linkages are calculated. for a three-phase transformer containing the delta-connected windings, the difference of the increments of flux linkages between the two phases are calculated using the line currents, because the winding currents are practically unavailable. Their ratios are compared with the turns ratio. The results of various tests show that the algorithm successfully discriminates internal faults from normal operation conditions such as magnetic inrush, overexcitation and external faults. The algorithm can not only detect internal winding faults, but reduce the operating time of a relay.

  • PDF

Optimization of Space Debris Collision Avoidance Maneuver for Formation Flying Satellites

  • Seong, Jae-Dong;Kim, Hae-Dong
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.291-298
    • /
    • 2013
  • The concept of the satellite formation flight is area where it is actively study with expandability and safety compare to existing satellite. For execution of duty with more safety issue, it needs to consider hot topic of space debris for operation of formation flight. In this paper, it suggests heuristic algorithm to have avoidance maneuver for space debris towards operating flight formation. Indeed it covers, using common software, operating simulation to nearest space environment and not only to have goal of avoidance but also minimizing the usage of fuel and finding optimization for maximizing cycle of formation flight. For improvement on convergence speed of existing heuristic algorithm, it substitute to hybrid heuristic algorithm, PSOGSA, and the result of simulation, it represents the satisfaction of minimum range for successful avoidance maneuver and compare to not using avoidance maneuver, it keeps more than three times of formation maintenance performance. From these, it is meaningful results of showing several success goals like simple avoidance collision and fuel usage and decreasing number of times of maintaining formation maneuver.

A Study on Driving Algorithm of Single-phase PMSM based on Proportional Resonant Current Controller (비례공진 전류제어기 기반의 단상 영구자석 동기전동기 운전에 관한 연구)

  • Seong, Uiseok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.1
    • /
    • pp.115-120
    • /
    • 2021
  • In this paper, an operating algorithm for single-phase permanent magnet synchronous motor based on PR current controller is proposed. In general, an asymmetric gap may occur depending on the shape of the rotor of single-phase PMSM, and this causes noise and vibration during high-speed operation. Therefore, in this paper, an operating algorithm for a single-phase PMSM usihng a proportional resonant current conrtoller with excellent control stability was proposed. Proportional resonant current controller has on steady state error is relatevly robust against distortion. Also, steady state error of AC input can be eleminated without complicated calculation process. The validity and availability of the proposed algorithm are verified through the experiment.