• Title/Summary/Keyword: opening displacement

Search Result 409, Processing Time 0.024 seconds

Trajectory Control of Excavator Actuators Using IMV (IMV를 이용한 굴착기 작업장치 궤적제어)

  • Jung, Gyuhong
    • Journal of Drive and Control
    • /
    • v.17 no.2
    • /
    • pp.45-54
    • /
    • 2020
  • The IMV is a combination of four two-way valve systems which replace a conventional four-way spool valve to improve efficiency mostly in excavator hydraulics. As the environmental regulations for construction equipment have tightened, some overseas advanced companies have released commercial excavators in which the MCV is implemented with the IMVs. Development of the IMV type MCV relies on the control algorithm as well as the robust performance of proportional flow control valves. In this study, the IMV controller was designed and verified with experiments for the excavator working unit, which determines the IMV mode of operation and the extent of the valve opening in consideration of the load conditions on hydraulic actuators. First, the open-loop controller was designed with a joystick command vs. a PSV reference current map comprising several control parameters in to compensate for the different flow characteristics and non-linearities of two-way flow control valves. Second, the closed-loop controller was designed with the PI control fed by the actuator displacement and outputs actuator percent effort equivalent to the operator's joystick command. Finally, the performance of the IMV type MCV was verified with the trajectory control of position references derived from the energy consumption test standard. Experimental results showed the control performance of the IMV developed in this study, and suggest that future studies to be conducted to advance technical progress.

Evaluation of Plastic Collapse Bending Load of Elbows with Thinning Area of Various Shapes (여러 형상의 감육부를 가진 엘보우의 소성붕괴 굽힘 하중의 평가)

  • Shin, Kyu-In;Lee, Sung-Ho;Yoon, Kee-Bong
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.3
    • /
    • pp.17-24
    • /
    • 2008
  • Elbows with various shapes of local wall thinning were numerically analyzed by finite element method to get load-displacement curves and the maximum loads. Results were compared with the experimental data obtained by another study. Elastic-plastic analysis were carried out under the combined loading conditions of internal pressure and in-plane bending loads. Two types of bending loads were considered such as elbow opening mode and elbow closing mode. Also, two different wall thinning geometries were modeled. Wall thinning area located extrados or intrados of elbow inner surface was considered. Longitudinal and circumferential lengths of the thinning area and the thinned thickness were varied for analysis. The results showed that the maximum load of the wall-thinned elbow decreased with increasing of the circumferential thinning length and the thinned thickness in both of extrados and intrados thinning locations in both loading types. The maximum load obtained by the analysis were in good agreement with the experimentally measured maximum load with the same wall thinning type and dimensions. This supports accuracy of the analysis results obtained in this study.

Shaking Table Test of 1/3-Scale 3-Story Sam-Hwan Camus Precast Concrete Model (1/3축소 3층 삼환까뮤 P.C 모델의 진동대 실험)

  • 이한선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.140-154
    • /
    • 1992
  • The objective of the research stated here was aimed at providing the information needed to establish the Korean Seismic Design Code Recommendations and Guides for precast concrete (P.C) large panel apartment buildings. This was accomplished by investigation and analysis of the response of P.C large panel structures subjected to shaking table excitation simulating earthquake ground motion. one of the test specimens used was 1/3-scaled 3-story box P.C model provided by Sam-Hwan Camus Corporation. The 4m $\times$4m shaking table was used to simulate the earthquake ground motion. the employed input accelerogram was the one recorded as Taft N21E component and the peak ground acceleration(PGA) was scaled depending on the desired level of seismic severity and the time according to dynamic similitude rule. Based on results obtained from shaking table test of this P.C model, the following conclusions were drawn . (1) As far as test specimen is concerned, the seismic safety factors turns out to be 7~8. (2)P.C model has damping ratio of about8% which is twice larger than in-situ R.C. structure. And (3)this model has global displacement ductility ratio of 2~3 through the energy dissipation by opening and sliding of joints.

  • PDF

A Study on the Shot Peening on the Low Temperature Fatigue Crack Propagation (쇼트피이닝 가공된 스프링강의 저온 피로균열진전 평가)

  • 박경동;정찬기;하경준;박상오;손명군;노영석
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.282-286
    • /
    • 2001
  • In this study, CT specimens were prepared from spring steel(SUP9) processed shot peening which was room temperature, low temperature and high temperature experiment. And we got the following characteristics from fatigue crack growth test carried out in the environment of room, low temperature and high temperature at $25^{\circ}C$,$-30^{\circ}C$,$-50^{\circ}C$,$-70^{\circ}C$ and $-100^{\circ}C$ in the range of stress ratio of 0.05 by means of opening mode displacement. The threshold stress intensity factor range $\Delta K_{th}$ in the early stage of fatigue crack growth (Region I ) and stress intensity factor range $\Delta K$ in the stable of fatigue crack growth (Region II) was decreased in proportion to descend temperature. It assumed that the fatigue resistance characteristics and fracture strength at low temperature and high temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region.

  • PDF

The Development Methods of Fatigue Strength Improvement for the Marine Structural Steel (해양구조용강의 피로강도향상 공법개발)

  • Park, Keyoung-Dong;Jung, Jae-Wook
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.106-111
    • /
    • 2003
  • This study made an experiment On fatigue crack propagation da/dn, stress intensity factor range ${\Delta}K$ respectively in room temperature and in low temperature. And we got the following characteristics from fatigue crack growth test carried Out in the environment of room temperature and law temperature at $25^{\circ}C$, $-60^{\circ}C$, $-80^{\circ}C$, and $-100^{\circ}C$ in the range of stress ratio of 0.3 by means of opening made displacement. The threshold stress intensity factor range ${\Delta}Kth$ in the early stage of fatigue crack growth (Mode I) and stress intensity factor range ${\Delta}K$ in the stable of fatigue crack growth (Made II) was decreased in proportion to descend temperature. It assumed that the fatigue resistance characteristics and fracture strength at law temperature and high temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region.

  • PDF

The Mechanical Properties of Recycled Plastic Fiber-Reinforced Concrete (재활용 플라스틱 섬유보강 콘크리트의 역학적 특성)

  • Yang, In-Hwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.3
    • /
    • pp.225-232
    • /
    • 2014
  • This paper concerns the mechanical properties of recycled plastic fiber-reinforced concrete. It presents experimental research results of recycled fiber-reinforced concrete with fiber volume fractions of 0, 0.5, 1.0, 1.5, and 2%. Experiments were performed to measure mechanical properties such as compressive strength, elastic modulus, tensile strength, and length changes. The results show that both compressive strength and elastic modulus decreased as fiber volume fraction increased. In addition, the experimental results show that recycled fiber-reinforced concrete is in favor of split tensile strength, flexural tensile strength, characteristic regarding crack mouth opening displacement, and length changes. The results of this study can be used to provide realistic information for modeling of mechanical properties in recycled plastic fiber-reinforced concrete in the future.

The Measurement of the Crack in CCT Specimen Using the Image Processing Techniques (영상처리기법을 이용한 CCT 시편 균열의 자동관측법에 관한 연구)

  • Lee, Hyun-Woo;Mun, Gi-Tae;Oh, Se-Jong;Jeong, Byung-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.528-533
    • /
    • 1997
  • In the analysis of fatigue crack propagation behavior, the crack length is one of the most important factors. In the test of crack propagation, compliance method is widely used to detect crack length. The measurement of surface crack length is not so easy with compliance method. In this study, the image processing technique was applied to measure the surface crack length. CCD(Charge-coupled device) camera was used to observe the crack image and the computer program to detect crack length from stored crack image was developed. CCT(Center Cracked Tension) specimen was used to compare the compliance method with the image processing technique. The crack length which detected by the image processing techniques was found to be well consistent with that from the optical measurement.

The Observation of Fatigue Striations for Aluminum Alloy by Atomic Force Microscope(AFM) (원자력 현미경(AFM)에 의한 알루미늄 합금의 피로 스트라이에이션 관찰)

  • Choe, Seong-Jong;Gwon, Jae-Do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.955-962
    • /
    • 2000
  • Scanning Probe Microscope (SPM) such as Scanning Tunneling Microscope (STM) and Atomic Force Microscope (AFM) was shown to be the powerful tool for nano-scale characterization of a fracture surface . AFM was used to study cross sectional profiles and dimensions of fatigue striations in 2017-T351 aluminum alloy. Their widths (SW) and heights (SH) were measured from the cross sectional profiles of three-dimension AFM images. The following results that will be helpful to understand the fatigue crack growth mechanism were obtained. (1) Coincidence of the crack growth rate with the striation width was found down to the growth rate of 10-5 mm/cycle. (2) The relation of SH=0.085(SW)1.2 was obtained. (3) The ratio of the striation height to its width SH/SW did not depend on the stress intensity factor range K and the stress ratio R. (4) Not only the SW but also the SH changed linearly with the crack tip opening displacement (CTOD) when plotted in log-log scale. From these results, the applicability of the AFM to nano-fractography is discussed.

An Analysis for The Ductile Crack Growth (연성 균열성장의 해석)

  • 구인회
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.103-111
    • /
    • 1990
  • This paper presents a methodology for predicting stable crack growth and instability of a cracked body under monotonically increasing load. It is based on a model that incremental crack extensions and load increments after fracture initiation occur by turns in sequence and the criterion that the crack grows by an incremebt .delta.a when the opening displacement at the current crack tip increases by a critical value V$_{c}$. It is shown that the value I$_{c}$ = V$_{c}$/ .delta. a is a material constant characterizing ductile crack growth resistance. Along with the fracture initiation toughness value, the constant is used for the calculation of the loads against crack extensions by adding up each increment. The specimen failure is defined to occur when the necessary load increment for crack extension is zero or when the limit load in the current ligament is reached. The predicted failure loads are in good agreement with the avaliable experimental failure loads for the compact and center-cracked tension specimens of 7075-T651, 2024-T351 aluminum alloys and 304 stainless steel.steel.

Change in Fracture Toughness within Heat-Affected Zone of SA-Welded 9% Ni Steel (LNG 저장탱크 내조용 9% Ni강의 SAW 용접열영향부내 파괴인성 변화 평가)

  • Jang, Jae-Il;Lee, Jeong-Seok;Lee, Baek-U;Ju, Jang-Bok;Gwon, Dong-Il;Kim, U-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.528-536
    • /
    • 2002
  • As one step for the safety performance of LNG storage tank, the change in fracture toughness within the X-grooved weld heat-affected zone (HAZ) of newly developed 9% Ni steel, which was submerged arc (SA)-welded, was investigated. Both crack initiation fracture toughness and crack arrest fracture toughness were evaluated by the crack tip opening displacement (CTOD) tests and compact crack arrest (CCA) tests. As the evaluated region approached the fusion line, each test result shorted different tendency, that is, crack initiation toughness decreased while crack arrest toughness increased. The results were discussed through the observation of the microstructural change.