• Title/Summary/Keyword: open-source software

Search Result 624, Processing Time 0.024 seconds

Speech Visualization of Korean Vowels Based on the Distances Among Acoustic Features (음성특징의 거리 개념에 기반한 한국어 모음 음성의 시각화)

  • Pok, Gouchol
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.5
    • /
    • pp.512-520
    • /
    • 2019
  • It is quite useful to represent speeches visually for learners who study foreign languages as well as the hearing impaired who cannot directly hear speeches, and a number of researches have been presented in the literature. They remain, however, at the level of representing the characteristics of speeches using colors or showing the changing shape of lips and mouth using the animation-based representation. As a result of such approaches, those methods cannot tell the users how far their pronunciations are away from the standard ones, and moreover they make it technically difficult to develop such a system in which users can correct their pronunciation in an interactive manner. In order to address these kind of drawbacks, this paper proposes a speech visualization model based on the relative distance between the user's speech and the standard one, furthermore suggests actual implementation directions by applying the proposed model to the visualization of Korean vowels. The method extract three formants F1, F2, and F3 from speech signals and feed them into the Kohonen's SOM to map the results into 2-D screen and represent each speech as a pint on the screen. We have presented a real system implemented using the open source formant analysis software on the speech of a Korean instructor and several foreign students studying Korean language, in which the user interface was built using the Javascript for the screen display.

Implementing a Model for Developing Participatory Labor Archives for Shipbuilding Labor Digital Archives in Young-do, Busan Metropolitan City (참여형 디지털 아카이브 구축 실행 방안 부산 영도 지역 조선(造船) 노동 아카이브 구축을 위하여)

  • Hyun, Moonsoo;Jeon, Bobae;Lee, Dong-Hyun
    • The Korean Journal of Archival Studies
    • /
    • no.42
    • /
    • pp.245-285
    • /
    • 2014
  • This study aims to implement a model for developing participatory labor archives for shipbuilding labor archives in young-do, Busan, and to find possibilities of building digital labor archives as participatory ones. The methodology of locality documentation has been applied, and locality archives accepting participation of people with experiences from shipbuilding industry have been examined. Omeka was applied because it is an open-source software and provides additional functions which support various user participations and web-publishing. Following the the model, firstly, a preliminary investigation was conducted and research of participatory agents and records was proceeded. Secondly, it collected and described information of the agents and records by institutions with records and provenance. Thirdly, it developed archival contents specific to events, persons and workplaces in association with archival information. For the follow-up study, plugins were installed and tested to apply for further experiment with participation.

VENTOS-Based Platoon Driving Simulations Considering Variability (가변성을 고려하는 VENTOS 기반 군집 자율주행 시뮬레이션)

  • Kim, Youngjae;Hong, Jang-Eui
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.2
    • /
    • pp.45-56
    • /
    • 2021
  • In platoon driving, several autonomous vehicles communicate to exchange information with each other and drive in a single cluster. The platooning technology has various advantages such as increasing road traffic, reducing energy consumption and pollutant emission by driving in short distance between vehicles. However, the short distance makes it more difficult to cope with an emergency accident, and accordingly, it is difficult to ensure the safety of platoon driving, which must be secured. In particular, the unexpected situation, i.e., variability that may appear during driving can adversely affect the safety of platoon driving. Because such variability is difficult to predict and reproduce, preparing safety guards to prevent risks arising from variability is a challenging work. In this paper, we studied a simulation method to avoid the risk due to the variability that may occur while platoon driving. In order to simulate safe platoon driving, we develop diverse scenarios considering the variability, design and apply safety guards to handle the variability, and extends the detail functions of VENTOS, an open source platooning simulator. Based on the simulation results, we have confirmed that the risks caused form the variability can be removed, and safe platoon driving is possible. We believe that our simulation approach will contribute to research and development to ensure safety in platoon driving.

Deep Learning-Based Prediction of the Quality of Multiple Concurrent Beams in mmWave Band (밀리미터파 대역 딥러닝 기반 다중빔 전송링크 성능 예측기법)

  • Choi, Jun-Hyeok;Kim, Mun-Suk
    • Journal of Internet Computing and Services
    • /
    • v.23 no.3
    • /
    • pp.13-20
    • /
    • 2022
  • IEEE 802.11ay Wi-Fi is the next generation wireless technology and operates in mmWave band. It supports the MU-MIMO (Multiple User Multiple Input Multiple Output) transmission in which an AP (Access Point) can transmit multiple data streams simultaneously to multiple STAs (Stations). To this end, the AP should perform MU-MIMO beamforming training with the STAs. For efficient MU-MIMO beamforming training, it is important for the AP to estimate signal strength measured at each STA at which multiple beams are used simultaneously. Therefore, in the paper, we propose a deep learning-based link quality estimation scheme. Our proposed scheme estimates the signal strength with high accuracy by utilizing a deep learning model pre-trained for a certain indoor or outdoor propagation scenario. Specifically, to estimate the signal strength of the multiple concurrent beams, our scheme uses the signal strengths of the respective single beams, which can be obtained without additional signaling overhead, as the input of the deep learning model. For performance evaluation, we utilized a Q-D (Quasi-Deterministic) Channel Realization open source software and extensive channel measurement campaigns were conducted with NIST (National Institute of Standards and Technology) to implement the millimeter wave (mmWave) channel. Our simulation results demonstrate that our proposed scheme outperforms comparison schemes in terms of the accuracy of the signal strength estimation.

A research on the Construction and Sharing of Authority Record-focusing on the Case of Social Networks and Archival Context Project (전거레코드 구축 및 공유에 관한 연구 SNAC 프로젝트 사례를 중심으로)

  • Lee, Eun Yeong
    • The Korean Journal of Archival Studies
    • /
    • no.71
    • /
    • pp.49-89
    • /
    • 2022
  • This study suggests the necessity and domestic application plan a national authority database that promotes an integrated access, richer search, and understanding of historical information sources and archival resources distributed among cultural heritage institutions through the "Social Networks and Archive Context" project case. As the SNAC project was transformed into an international cooperative organization led by NARA, it was possible to secure a sustainable operating system and realize cooperative authority control. In addition, SNAC authority records have the characteristics of providing richer contextual information about life and history and social and intellectual network information compared to libraries. Through case analysis, First, like SNAC, a cooperative body led by the National Archives and having joint ownership of the National Library of Korea should lead the development and expand the scope of participating institutions. Second, in the cooperative method, take a structure in which divisions are made for each field with special strengths, but the main decision-making is made through the administrative team in which the two organizations participate. Third, development of scalable open source software that can collect technical information in various formats when constructing authority data, designing with the structure and elements of archival authority records, designing functions to control the quality of authority records, and building user-friendly interfaces and the need for a platform design reflecting content elements.

A Study on the 3D Precise Modeling of Old Structures Using Merged Point Cloud from Drone Images and LiDAR Scanning Data (드론 화상 및 LiDAR 스캐닝의 정합처리 자료를 활용한 노후 구조물 3차원 정밀 모델링에 관한 연구)

  • Chan-hwi, Shin;Gyeong-jo, Min;Gyeong-Gyu, Kim;PuReun, Jeon;Hoon, Park;Sang-Ho, Cho
    • Explosives and Blasting
    • /
    • v.40 no.4
    • /
    • pp.15-26
    • /
    • 2022
  • With the recent increase in old and dangerous buildings, the demand for technology in the field of structure demolition is rapidly increasing. In particular, in the case of structures with severe deformation of damage, there is a risk of deterioration in stability and disaster due to changes in the load distribution characteristics in the structure, so rapid structure demolition technology that can be efficiently dismantled in a short period of time is drawing attention. However, structural deformation such as unauthorized extension or illegal remodeling occurs frequently in many old structures, which is not reflected in structural information such as building drawings, and acts as an obstacle in the demolition design process. In this study, as an effective way to overcome the discrepancy between the structural information of old structures and the actual structure, access to actual structures through 3D modeling was considered. 3D point cloud data inside and outside the building were obtained through LiDAR and drone photography for buildings scheduled to be blasting demolition, and precision matching between the two spatial data groups was performed using an open-source based spatial information construction system. The 3D structure model was completed by importing point cloud data matched with 3D modeling software to create structural drawings for each layer and forming each member along the structure slab, pillar, beam, and ceiling boundary. In addition, the modeling technique proposed in this study was verified by comparing it with the actual measurement value for selected structure member.

Development of Intelligent OCR Technology to Utilize Document Image Data (문서 이미지 데이터 활용을 위한 지능형 OCR 기술 개발)

  • Kim, Sangjun;Yu, Donghui;Hwang, Soyoung;Kim, Minho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.212-215
    • /
    • 2022
  • In the era of so-called digital transformation today, the need for the construction and utilization of big data in various fields has increased. Today, a lot of data is produced and stored in a digital device and media-friendly manner, but the production and storage of data for a long time in the past has been dominated by print books. Therefore, the need for Optical Character Recognition (OCR) technology to utilize the vast amount of print books accumulated for a long time as big data was also required in line with the need for big data. In this study, a system for digitizing the structure and content of a document object inside a scanned book image is proposed. The proposal system largely consists of the following three steps. 1) Recognition of area information by document objects (table, equation, picture, text body) in scanned book image. 2) OCR processing for each area of the text body-table-formula module according to recognized document object areas. 3) The processed document informations gather up and returned to the JSON format. The model proposed in this study uses an open-source project that additional learning and improvement. Intelligent OCR proposed as a system in this study showed commercial OCR software-level performance in processing four types of document objects(table, equation, image, text body).

  • PDF

Analysis of a Compound-Target Network of Oryeong-san (오령산 구성성분-타겟 네트워크 분석)

  • Kim, Sang-Kyun
    • Journal of the Korea Knowledge Information Technology Society
    • /
    • v.13 no.5
    • /
    • pp.607-614
    • /
    • 2018
  • Oryeong-san is a prescription widely used for diseases where water is stagnant because it has the effect of circulating the water in the body and releasing it into the urine. In order to investigate the mechanisms of oryeong-san, we in this paper construct and analysis the compound-target network of medicinal materials constituting oryeong-san based on a systems pharmacology approach. First, the targets related to the 475 chemical compounds of oryeong-san were searched in the STITCH database, and the search results for the interactions between compounds and targets were downloaded as XML files. The compound-target network of oryeong-san is visualized and explored using Gephi 0.8.2, which is an open-source software for graphs and networks. In the network, nodes are compounds and targets, and edges are interactions between the nodes. The edge is weighted according to the reliability of the interaction. In order to analysis the compound-target network, it is clustered using MCL algorithm, which is able to cluster the weighted network. A total of 130 clusters were created, and the number of nodes in the cluster with the largest number of nodes was 32. In the clustered network, it was revealed that the active compounds of medicinal materials were associated with the targets for regulating the blood pressure in the kidney. In the future, we will clarify the mechanisms of oryeong-san by linking the information on disease databases and the network of this research.

A School-tailored High School Integrated Science Q&A Chatbot with Sentence-BERT: Development and One-Year Usage Analysis (인공지능 문장 분류 모델 Sentence-BERT 기반 학교 맞춤형 고등학교 통합과학 질문-답변 챗봇 -개발 및 1년간 사용 분석-)

  • Gyeongmo Min;Junehee Yoo
    • Journal of The Korean Association For Science Education
    • /
    • v.44 no.3
    • /
    • pp.231-248
    • /
    • 2024
  • This study developed a chatbot for first-year high school students, employing open-source software and the Korean Sentence-BERT model for AI-powered document classification. The chatbot utilizes the Sentence-BERT model to find the six most similar Q&A pairs to a student's query and presents them in a carousel format. The initial dataset, built from online resources, was refined and expanded based on student feedback and usability throughout over the operational period. By the end of the 2023 academic year, the chatbot integrated a total of 30,819 datasets and recorded 3,457 student interactions. Analysis revealed students' inclination to use the chatbot when prompted by teachers during classes and primarily during self-study sessions after school, with an average of 2.1 to 2.2 inquiries per session, mostly via mobile phones. Text mining identified student input terms encompassing not only science-related queries but also aspects of school life such as assessment scope. Topic modeling using BERTopic, based on Sentence-BERT, categorized 88% of student questions into 35 topics, shedding light on common student interests. A year-end survey confirmed the efficacy of the carousel format and the chatbot's role in addressing curiosities beyond integrated science learning objectives. This study underscores the importance of developing chatbots tailored for student use in public education and highlights their educational potential through long-term usage analysis.

Comparison of Deep Learning Frameworks: About Theano, Tensorflow, and Cognitive Toolkit (딥러닝 프레임워크의 비교: 티아노, 텐서플로, CNTK를 중심으로)

  • Chung, Yeojin;Ahn, SungMahn;Yang, Jiheon;Lee, Jaejoon
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.1-17
    • /
    • 2017
  • The deep learning framework is software designed to help develop deep learning models. Some of its important functions include "automatic differentiation" and "utilization of GPU". The list of popular deep learning framework includes Caffe (BVLC) and Theano (University of Montreal). And recently, Microsoft's deep learning framework, Microsoft Cognitive Toolkit, was released as open-source license, following Google's Tensorflow a year earlier. The early deep learning frameworks have been developed mainly for research at universities. Beginning with the inception of Tensorflow, however, it seems that companies such as Microsoft and Facebook have started to join the competition of framework development. Given the trend, Google and other companies are expected to continue investing in the deep learning framework to bring forward the initiative in the artificial intelligence business. From this point of view, we think it is a good time to compare some of deep learning frameworks. So we compare three deep learning frameworks which can be used as a Python library. Those are Google's Tensorflow, Microsoft's CNTK, and Theano which is sort of a predecessor of the preceding two. The most common and important function of deep learning frameworks is the ability to perform automatic differentiation. Basically all the mathematical expressions of deep learning models can be represented as computational graphs, which consist of nodes and edges. Partial derivatives on each edge of a computational graph can then be obtained. With the partial derivatives, we can let software compute differentiation of any node with respect to any variable by utilizing chain rule of Calculus. First of all, the convenience of coding is in the order of CNTK, Tensorflow, and Theano. The criterion is simply based on the lengths of the codes and the learning curve and the ease of coding are not the main concern. According to the criteria, Theano was the most difficult to implement with, and CNTK and Tensorflow were somewhat easier. With Tensorflow, we need to define weight variables and biases explicitly. The reason that CNTK and Tensorflow are easier to implement with is that those frameworks provide us with more abstraction than Theano. We, however, need to mention that low-level coding is not always bad. It gives us flexibility of coding. With the low-level coding such as in Theano, we can implement and test any new deep learning models or any new search methods that we can think of. The assessment of the execution speed of each framework is that there is not meaningful difference. According to the experiment, execution speeds of Theano and Tensorflow are very similar, although the experiment was limited to a CNN model. In the case of CNTK, the experimental environment was not maintained as the same. The code written in CNTK has to be run in PC environment without GPU where codes execute as much as 50 times slower than with GPU. But we concluded that the difference of execution speed was within the range of variation caused by the different hardware setup. In this study, we compared three types of deep learning framework: Theano, Tensorflow, and CNTK. According to Wikipedia, there are 12 available deep learning frameworks. And 15 different attributes differentiate each framework. Some of the important attributes would include interface language (Python, C ++, Java, etc.) and the availability of libraries on various deep learning models such as CNN, RNN, DBN, and etc. And if a user implements a large scale deep learning model, it will also be important to support multiple GPU or multiple servers. Also, if you are learning the deep learning model, it would also be important if there are enough examples and references.