• Title/Summary/Keyword: open-pit mining

Search Result 33, Processing Time 0.022 seconds

Designing a Vehicles for Open-Pit Mining with Optimized Scheduling Based on 5G and IoT

  • Alaboudi, Abdulellah A.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.145-152
    • /
    • 2021
  • In the Recent times, various technological enhancements in the field of artificial intelligence and big data has been noticed. This advancement coupled with the evolution of the 5G communication and Internet of Things technologies, has helped in the development in the domain of smart mine construction. The development of unmanned vehicles with enhanced and smart scheduling system for open-pit mine transportation is one such much needed application. Traditional open-pit mining systems, which often cause vehicle delays and congestion, are controlled by human authority. The number of sensors has been used to operate unmanned cars in an open-pit mine. The sensors haves been used to prove the real-time data in large quantity. Using this data, we analyses and create an improved transportation scheduling mechanism so as to optimize the paths for the vehicles. Considering the huge amount the data received and aggregated through various sensors or sources like, the GPS data of the unmanned vehicle, the equipment information, an intelligent, and multi-target, open-pit mine unmanned vehicle schedules model was developed. It is also matched with real open-pit mine product to reduce transport costs, overall unmanned vehicle wait times and fluctuation in ore quality. To resolve the issue of scheduling the transportation, we prefer to use algorithms based on artificial intelligence. To improve the convergence, distribution, and diversity of the classic, rapidly non-dominated genetic trial algorithm, to solve limited high-dimensional multi-objective problems, we propose a decomposition-based restricted genetic algorithm for dominance (DBCDP-NSGA-II).

Development Environment for Open-pit Mine Monitoring System using Geospatial Open Platform and Open Source Software (공간정보오픈플랫폼 및 오픈 소스 기반의 노천광산 모니터링시스템 개발을 위한 환경 조성)

  • Lee, Hyun Jik;Kim, Se Yul;You, Ji Ho
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.4
    • /
    • pp.165-173
    • /
    • 2014
  • Open-pit mining method, is safe relatively work as compared with underground mining. And high yield, low production cost, has the advantage that it can provide a lot of production. But deforestation, tailings and slag deposition, mineral debris, dust, water, noise, land subsidence, sediment runoff discharge, I have internalized environmental disaster predisposing factors, such as landslides. Thus, it may be noted, also by typical environmental regulations. We try to deal with the changes in open pit terrain and environment related issues. Then, use the recovery period and the open pit mine and ecology off the gun, environment-friendly development of accurate monitoring methods, systems of this development is required. The use of open platforms and open source GIS tools have been developed during this period, it needs to develop spatial information environment monitoring system open pit mine construction.

Model test on slope deformation and failure caused by transition from open-pit to underground mining

  • Zhang, Bin;Wang, Hanxun;Huang, Jie;Xu, Nengxiong
    • Geomechanics and Engineering
    • /
    • v.19 no.2
    • /
    • pp.167-178
    • /
    • 2019
  • Open-pit (OP) and underground (UG) mining are usually used to exploit shallow and deep ore deposits, respectively. When mine deposit starts from shallow subsurface and extends to a great depth, sequential use of OP and UG mining is an efficient and economical way to maintain mining productivity. However, a transition from OP to UG mining could induce significant rock movements that cause the slope instability of the open pit. Based on Yanqianshan Iron Mine, which was in the transition from OP to UG mining, a large-scale two-dimensional (2D) model test was built according to the similar theory. Thereafter, the UG mining was carried out to mimic the process of transition from OP to UG mining to disclose the triggered rock movement as well as to assess the associated slope instability. By jointly using three-dimensional (3D) laser scanning, distributed fiber optics, and digital photogrammetry measurement, the deformations, movements and strains of the rock slope during mining were monitored. The obtained data showed that the transition from OP to UG mining led to significant slope movements and deformations that can trigger catastrophic slope failure. The progressive movement of the slope could be divided into three stages: onset of micro-fracture, propagation of tensile cracks, and the overturning and/or sliding of slopes. The failure mode depended on the orientation of structural joints of the rock mass as well as the formation of tension cracks. This study also proved that these non-contact monitoring technologies were valid methods to acquire the interior strain and external deformation with high precision.

Design and Implementation of Early Warning Monitoring System for Cross-border Mining in Open-pit Mines (노천광산의 월경 채굴 조기경보 모니터링시스템의 설계 및 구현)

  • Li Ke;Byung-Won Min
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.25-41
    • /
    • 2024
  • For the scenario of open pit mining, at present, manual periodic verification is mainly carried out in China with the help of video surveillance, which requires continuous investment in labor cost and has poor timeliness. In order to solve this difficult problem of early warning and monitoring, this paper researches a spatialized algorithmic model and designs an early warning system for open-pit mine transboundary mining, which is realized by calculating the coordinate information of the mining and extracting equipments and comparing it with the layer coordinates of the approval range of the mines in real time, so as to realize the determination of the transboundary mining behavior of the mines. By taking the Pingxiang area of Jiangxi Province as the research object, after the field experiment, it shows that the system runs stably and reliably, and verifies that the target tracking accuracy of the system is high, which can effectively improve the early warning capability of the open-pit mines' overstepping the boundary, improve the timeliness and accuracy of mine supervision, and reduce the supervision cost.

Establishment of Tailing Disposal Scenario in Open-Pit and Surface Pillar Stability Analysis (노천채굴적 내 광미 적치 시나리오 구축 및 천반 수평필러 안정성 분석)

  • Il-Seok Kang;Jae-Joon Song;Thomas Pabst
    • Tunnel and Underground Space
    • /
    • v.34 no.1
    • /
    • pp.54-70
    • /
    • 2024
  • Utilization of completed open-pit for mining waste disposal is an alternative method of tailing storage facility (TSF), which can minimize the area and cost required for the installation of TSF. However, long-term tailing disposal into open-pit has a potential risk of reducing mechanical stability of surrounding rock mass by acting as an additional load. In this research, a realistic open-pit tailing disposal scenario of 60,400 hours was established based on the case of Marymia gold mine, Australia. Mechanical stability of surface pillar between open-pit and underground stope was analyzed numerically by using Sigma/W, under different stope geometry and rock mass conditions. Simulation results showed that long-term tailing disposal into open-pit can significantly increase the failure probability of surface piller. This result suggests that mechanical stability of mine geometry should be conducted beforehand of open-pit tailing disposal.

Some Suggestions to Reduce Environmental Hazards from Open Pit Mining and to Revise Related Regulations for Limestone Mines (석회석 자원의 노천채굴에 따른 환경 오염원의 저감 및 관련 제도의 개선방안)

  • 임한욱;백환조
    • Tunnel and Underground Space
    • /
    • v.9 no.3
    • /
    • pp.230-237
    • /
    • 1999
  • Production of limestone for cement in Kangwon and Chungbuk areas reaches over 80 million tonnes per year. However, many regulatory activities for preservation of the environment against potential hazardous impacts from the open pit mining make it difficult for the industry. With recent improvement of the mining methods and working conditions, the regulations related to the quarrying of limestone may need to be revised. Methods for reducing environmental hazards are proposed in this paper, with some suggestions concerning the revision of related regulations. This study is expected to serve as a practical solution for the cement industry in balance of preservation and development.

  • PDF

3-dimensional Modeling and Mining Analysis for Open-pit Limestone Mine Stope Using a Rotary-wing Unmanned Aerial Vehicle (회전익 무인항공기를 이용한 노천석회석광산 채굴장 3차원 모델링 및 채굴량 분석)

  • Kang, Seong-Seung;Lee, Geon-Ju;Noh, Jeongdu;Jang, Hyeongdoo;Kim, Sun-Myung;Ko, Chin-Surk
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.701-714
    • /
    • 2018
  • The purpose of this study is to show the possibility of 3-dimensional modeling of open-pit limestone mine by using a rotary-wing unmanned aerial vehicle, a drone, and to estimate the amount of mining before and after mining of limestone by explosive blasting. Analysis of the image duplication of the mine has shown that it is possible to achieve high image quality. Analysis of each axis error at the shooting position after analyzing the distortions through camera calibration was shown the allowable range. As a result of estimating the amount of mining before and after explosive blasting, it was possible to estimate the amount of mining of a wide range quickly and accurately in a relatively short time. In conclusion, it is considered that the drone of a rotary-wing unmanned aerial vehicle can be usefully used for the monitoring of open-pit limestone mines and the estimation of the amount of mining. Furthermore, it is expected that this method will be utilized for periodic monitoring of construction sites and road slopes as well as open-pit mines in the future.

Activity of the Fushun West Open-pit Mine in China Observed by Sentinel-1 InSAR Coherence Images

  • Jung, Da-woon;Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.4
    • /
    • pp.365-374
    • /
    • 2022
  • Mining activity causes environmental pollution and geological hazards such as ground subsidence or landslide of which continuous monitoring is necessary. In this study, the activity on the Fushun West Open-Pit Mine (FWOPM), one of the largest open-pit coal mines in Asia located in Fushun, Liaoning Province, China, was analyzed by using a time-series Sentinel-1 InSAR coherence dataset. By using the difference between the two Digital Elevation Models (DEM) of the area, it was possible to confirm that there was a stockpiling activity in the western area of the FWOPM while excavation activity in the eastern area. By using RGB composite images using the yearly-averaged InSAR coherence images, the activity of the mine was confirmed by period, which was confirmed by Google Earth optical images. As a result, it was possible to confirm three landslides and the related activities on the northwest slope and the dumping activity on the west slope of FWOPM.

Numerical Simulations of Developing Mining Pit using Quasi-Steady Model (준정류모형을 이용한 하천의 준설 웅덩이 발달 모의)

  • Choi, Sung-Uk;Choi, Seongwook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1B
    • /
    • pp.53-57
    • /
    • 2012
  • This study presents a numerical model that is capable of simulating the evolution of mining pit in a stream. The numerical model is based on the quasi-steady assumption that the flow is steady with time-dependent morphological change. This hypothesis is valid due to the fact that the stream morphology changes over a long period compared with the time of flow change. Before applications, numerical experiments are carried out with two total load formulas such as Engelund and Hansen's (1967) and Ackers and White's (1973). It is found that the use of Engelund and Hansen's formula reproduces evolution of mining pit best compared with simulated profiles in Parker (2004). Then, the model is applied to two laboratory experiments in the literature. In general, the numerical model simulates properly the evolution of mining pit in laboratory open-channels. However, it is found that the model does not reproduce head-cutting, propagating upstream, and under-estimates the wave of the bed, propagating downstream, after finishing the re-fill of the mining pit.

Comparison of Hoek-Brown and Mohr-Coulomb failure criterion for deep open coal mine slope stability

  • Aksoy, Cemalettin O.;Uyar, Guzin G.;Ozcelik, Yilmaz
    • Structural Engineering and Mechanics
    • /
    • v.60 no.5
    • /
    • pp.809-828
    • /
    • 2016
  • In deep open pit mines, slope stability is very important. Particularly, increasing the depths increase the risks in mines having weak rock mass. Blasting operations in this type of open pits may have a negative impact on slope stability. Several or combination of methods can be used in order to enable better analysis in this type of deep open-pit mines. Numerical modeling is one of these options. Many complex problems can be integrated into numerical methods at the same time and analysis, solutions can be performed on a single model. Rock failure criterions and rock models are used in numerical modeling. Hoek-Brown and Mohr-Coulomb terms are the two most commonly used rock failure conditions. In this study, mine planning and discontinuity conditions of a lignite mine facing two big landslides previously, has been investigated. Moreover, the presence of some damage before starting the study was identified in surrounding structures. The primary research of this study is on slope study. In slope stability analysis, numerical modeling methods with Hoek-Brown and Mohr-Coulomb failure criterions were used separately. Preparing the input data to the numerical model, the outcomes of patented-blast vibration minimization method, developed by co-author was used. The analysis showed that, the model prepared by applying Hoek-Brown failure criterion, failed in the stage of 10. However, the model prepared by using Mohr-Coulomb failure criterion did not fail even in the stage 17. Examining the full research field, there has been ongoing production in this mine without any failure and damage to surface structures.