• Title/Summary/Keyword: open-circuit

Search Result 1,167, Processing Time 0.026 seconds

The characteristics of electrochemical etch-stop in THAH/IPA/pyrazine solution (TMAH/IPA/pyrazine 용액에서의 전기화학적 식각정지특성)

  • Chung, G.S.;Park, C.S.
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.6
    • /
    • pp.426-431
    • /
    • 1998
  • This paper describes electrochemical etch-stop characteristics in THAH/IPA/pyrazine solution. I-V curves of n- and p-type Si in THAH/IPA/pyrazine solution were obtained. OCP(Open Circuit Potential) and PP (Passivation Potential) of p-type Si were -1.2 V and 0.1 V, and of n-type Si were -1.3 V and -0.2 V, respectively. Both n- and p-type Si, etching rates were abruptly decreased at potentials anodic to the PP. The etch-stop characteristics in THAH/IPA/pyrazine solution were observed. Since accurate etching stop occurs at pn junction, Si diaphragms having thickness of epi-layer were fabricated. Etching rate is highest at optimum etching condition, TMAH 25wt.%/IPA 17vol.%/pyrazine 0.1g/100ml. thus the elapsed time of etch-stop was reduced.

  • PDF

Accuracy of predictive equations for resting energy expenditure (REE) in non-obese and obese Korean children and adolescents

  • Kim, Myung-Hee;Kim, Jae-Hee;Kim, Eun-Kyung
    • Nutrition Research and Practice
    • /
    • v.6 no.1
    • /
    • pp.51-60
    • /
    • 2012
  • Weight-controlling can be supported by a proper prescription of energy intake. The individual energy requirement is usually determined through resting energy expenditure (REE) and physical activity. Because REE contributes to 60-70% of daily energy expenditure, the assessment of REE is very important. REE is often predicted using various equations, which are usually based on the body weight, height, age, gender, and so on. The aim of this study is to validate the published predictive equations for resting energy expenditure in 76 normal weight and 52 obese Korean children and adolescents in the 7-18 years old age group. The open-circuit indirect calorimetry using a ventilated hood system was used to measure REE. Sixteen REE predictive equations were included, which were based on weight and/or height of children and adolescents, or which were commonly used in clinical settings despite its use based on adults. The accuracy of the equations was evaluated on bias, RMSPE, and percentage of accurate prediction. The means of age and height were not significantly different among the groups. Weight and BMI were significantly higher in obese group (64.0 kg, $25.9kg/m^2$) than in the non-obese group (44.8 kg, $19.0kg/m^2$). For the obese group, the Molnar, Mifflin, Liu, and Harris-Benedict equations provided the accurate predictions of > 70% (87%, 79% 77%, and 73%, respectively). On the other hand, for non-obese group, only the Molnar equation had a high level of accuracy (bias of 0.6%, RMSPE of 90.4 kcal/d, and accurate prediction of 72%). The accurate prediction of the Schofield (W/WH), WHO (W/WH), and Henry (W/WH) equations was less than 60% for all groups. Our results showed that the Molnar equation appears to be the most accurate and precise for both the non-obese and the obese groups. This equation might be useful for clinical professionals when calculating energy needs in Korean children and adolescents.

Triplexer based on Filter Characteristics of CRLH Transmission Line and Triple-Band Amplifier Applications (CRLH 전송선로의 필터 특성을 이용한 트리플렉서와 삼중대역 증폭기에의 응용)

  • Yun, Jeong-Ho;Kim, Young;Yoon, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.3
    • /
    • pp.433-439
    • /
    • 2012
  • In this paper, we proposed the triplexer using unit-cell of CRLH transmission line which has a bandpass characteristic to reduce adjacent channel interference. The input impedance of triplexer with each channel filter is operated open-circuit at the resonance frequencies of other channels. Such property is due to the combination a series and parallel resonance circuits of CRLH-TL unit-cell. The measured triplexer results are showed a measured insertion loss of each channel, less than 1.5 dB, matching at each port, less than 15dB and isolation between channel, better than 25 dB. Also, to validate the triplexer, a small signal amplifier with triple-band is designed and tested. the measured amplifier results show good agreements with prediction.

Corrosion mitigation of photovoltaic ribbon using a sacrificial anode (희생양극을 이용한 태양광 리본의 부식 저감)

  • Oh, Wonwook;Chan, Sung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.681-686
    • /
    • 2017
  • Degradation is commonly observed in field-aged PV modules due to corrosion of the photovoltaic ribbon. The reduced performance is caused by a loss of fill factor due to the high series resistance in the PV ribbon. This study aimed to mitigate the degradation by corrosion using five sacrificial anodes - Al, Zn and their alloys - to identify the most effective material to mitigate the corrosion of the PV ribbon. The corrosion behavior of the five sacrificial anode materials were examined by open circuit potential measurements, potentiodynamic polarization tests, and galvanic current density and potential measurements using a zero resistance ammeter. Immersion tests for 120 hours were also conducted using materials and damp heat test tests were performed for 1500 hours using 4 cell mini modules. The Al-3Mg and Al-3Zn-1Mg sacrificial anodes had a low corrosion rate and reduced drop in power, making then suitable for long-term use.

Voltammetric Determination of Copper(II) Using Glassy Carbon Electrodes Modified with Nafion-DTPA-Glycerol

  • Park, Chan-Ju;Park, Eun-Heui;Chung, Keun-Ho
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2003.06a
    • /
    • pp.177-180
    • /
    • 2003
  • A glassy carbon electrode(GCE) modified with nafion-DTPA-glycerol was used for the highly selective and sensitive determination of a trace amount of Cu$\^$2+/. Various experimental parameters, which influenced the response of nafion-DTPA-glycerol modified electrode to Cu$\^$2+/, were optimized. The copper(II) was accumulated on the electrode surface by the formation of the complex in an open circuit, and the resulting surface was characterized by medium exchange, electrochemical reduction, and differential pulse voltammetry, A linear range was obtained in the concentration range 1.0${\times}$10$\^$-8/M∼1.0${\times}$10$\^$-6/M Cu(II) with 7 min preconcentration. Further, when an approximate amount of lead(II) is added to the test solution, nafion-DTPA-glycerol modified glassy carbon electrode has a dynamic range of 2 orders magnitude(1.0${\times}$10$\^$-9/M∼1.0${\times}$10$\^$-7/M). The detection limit(3 $\sigma$) was as low as 5.0${\times}$10$\^$-6/M(0.032ppb). The interferences from other metal ions could be reduced by adding KCN into the sample solutions. This method was applied to the determination of coppe,(II) in certified reference material(3.23${\times}$10$\^$-7/M, 21ppb), sea water(9.50${\times}$10/sup-7/M, 60ppb). The result agrees satisfactorily with the value measured by Korea Research Institute of Standard and Science.

  • PDF

Effect of the LDC Buffer Layer in LSGM-based Anode-supported SOFCs (LSGM계 음극지지형 고체산화물 연료전지에 적용된 LDC 완충층의 효과)

  • Song, Eun-Hwa;Chung, Tai-Joo;Kim, Hae-Ryoung;Son, Ji-Won;Kim, Byung-Kook;Lee, Jong-Ho;Lee, Hae-Weon
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.12
    • /
    • pp.710-714
    • /
    • 2007
  • LSGM$(La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.2}O_{3-{\delta}})$ is the very promising electrolyte material for lower-temperature operation of SOFCs, especially when realized in anode-supported cells. But it is notorious for reacting with other cell components and resulting in the highly resistive reaction phases detrimental to cell performance. LDC$(La_{0.4}Ce_{0.6}O_{1.8})$, which is known to keep the interfacial stability between LSGM electrolyte and anode, was adopted in the anode-supported cell, and its effect on the interfacial reactivity and electrochemical performance of the cell was investigated. No severe interfacial reaction and corresponding resistive secondary phase was found in the cell with LDC buffer layer, and this is due to its ability to sustain the La chemical potential in LSGM. The cell exhibited the open circuit voltage of 0.64V, the maximum power density of 223 $mW/cm^2$, and the ohmic resistance of $0.17{\Omega}cm^2$ at $700^{\circ}C$. These values were much improved compared with those from the cell without any buffer layer, which implies that formation of the resistive reaction phases in LSGM and then deterioration of the cell performance is resulted mainly from the La diffusion from LSGM electrolyte to anode.

A Study on $TiO_2$ Thin Film by PLD for Buffer Layer between Mesoproso $TiO_2$ and FTO of Dye-sensitized Solar Cell (염료 감응형 태양전지에서 Mesoproso $TiO_2$/FTO 사이에 완충층으로써의 PLD로 증착한 $TiO_2$ 박막에 관한 연구)

  • Song, Sang-Woo;Kim, Sung-Su;Roh, Ji-Hyoung;Lee, Kyung-Ju;Moon, Byung-Moo;Kim, Hyun-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.424-424
    • /
    • 2008
  • Dye-sensitized Solar Cell (DSC) is a new type of solar cell by using photocatalytic properties of $TiO_2$. The electric potential distribution in DSCs has played a major role in the operation of such cells. Models based on a built-in electric field which sets the upper limit for the open circuit voltage(Voc) and/or the possibility of a Schottky barrier at the interface between the mesoporous wide band gap semiconductor and the transparent conducting substrate have been presented. $TiO_2$ thin films were deposited on the FTO substrate by Nd:YAG Pulsed Laser Deposition(PLD) at room temperature and post-deposition annealing at $500^{\circ}C$ in flowing $O_2$ atmosphere for 1 hour. The structural properties of $TiO_2$ thin films have investigated by X-ray diffraction(XRD) and atomic force microscope(AFM). Thickness of $TiO_2$ thin films were controlled deference deposition time and measurement by scanning electron microscope(SEM). Then we manufactured a DSC unit cells and I-V and efficiency were tested using solar simulator.

  • PDF

THE ELECTROCHEMICAL STUDY ON CORROSION RESISTANCE OF VARIOUS DENIAL MAGNETIC ATTACHMENTS (수종 치과용 자석유지장치의 부식저항성에 대한 전기화학적 연구)

  • Sohn Byoung-Sup;Chang Ik-Tae;Heo Seong-Joo;Keak Jai-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.4
    • /
    • pp.336-350
    • /
    • 2001
  • The purpose of this study was to investigate corrosion tendency and to compare corrosion resistance of three dental magnetic attachments and its keeper alloy by coercive, electrochemical method. By using petentiodynamic polarization technique, magnetic elements and its keeper alloy of Magfit EX600 system(MF, MFK), Dyna ES regular system(DN, DNK) and Shiner SR magnet system(SR, SRK) were corroded electrochemically in 0.9% NaCl electrolytic solution. Open-circuit potential and anodic polarization curve was measured with Potentiostat(model 273 EG&E) and polarization curve was created by current density per square area following scanning of increased series of voltage in the rate of 1.0mV per second. Before and after electrochemical corrosion, the surface roughness test was done. Thereafter the change of mean surface roughness value(Ra) and mean peak value(Rt) of surface roughness was compared one another. In order to observe the corroded surface of each specimen, metallurgical light microscopic(${\times}37.5$) and scanning electron microscopic view(SEM ${\times}100$) was taken and compared one another. Conclusion is followings. 1. All of six covering metal of dental magnetic attachments and its keeper alloy were corroded in various degree after electrochemical corrosion. 2. The corrosion resistance of which used in this experiment is the following in high order; DNK, MFK, DN, MF, SRK and SR. 3. Especially Shiner magnet system and its keeper alloy were more severely corroded after electrochemical corrosion and the change of Ra Rt value were more increased than others. 4 Metallurgical and scanning electron microscopic view showed the pitting corrosion tendency of all experimental alloy but DNK and SR. 5. Covering metal of magnet was more corroded than its keeper alloy.

  • PDF

A High-speed Atomic Force Microscope for Precision Measurement of Microstructured Surfaces

  • Cui, Yuguo;Arai, Yoshikazu;Asai, Takemi;Ju, BinFeng;Gao, Wei
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.27-32
    • /
    • 2008
  • This paper describes a contact atomic force microscope (AFM) that can be used for high-speed precision measurements of microstructured surfaces. The AFM is composed of an air-bearing X stage, an air-bearing spindle with the axis of rotation in the Z direction, and an AFM probe unit. The traversing distance and maximum speed of the X stage are 300 mm and 400 mm/s, respectively. The spindle has the ability to hold a sample in a vacuum chuck with a maximum diameter of 130 mm and has a maximum rotation speed of 300 rpm. The bandwidth of the AFM probe unit in an open loop control circuit is more than 40 kHz. To achieve precision measurements of microstructured surfaces with slopes, a scanning strategy combining constant height measurements with a slope compensation technique is proposed. In this scanning strategy, the Z direction PZT actuator of the AFM probe unit is employed to compensate for the slope of the sample surface while the microstructures are scanned by the AFM probe at a constant height. The precision of such a scanning strategy is demonstrated by obtaining profile measurements of a microstructure surface at a series of scanning speeds ranging from 0.1 to 20.0 mm/s.

Influence of para-orientating Methoxyl Units on the Electronic Structures and Light Absorption Properties of the Triphenylamine-based dyes by DFT Study

  • Liang, Guijie;Xu, Jie;Xu, Weilin;Wang, Luoxin;Shen, Xiaolin;Yao, Mu
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2279-2285
    • /
    • 2011
  • The geometries, electronic structures and absorption spectra of the two organic triphenylamine-based dyes TA-St-CA and TA-DM-CA, containing identical electron donors and acceptors but the different conjugated bridges, were studied by density functional theory (DFT) at the B3LYP and PBE1PBE levels, respectively. The influence of para-orientating methoxyl units on the electronic structures and light absorption properties of the dyes and the consequent photovoltaic performance of the dye-sensitized solar cells (DSSCs) were investigated in detail. The results indicate that the introduction of the para-orientating methoxyl units into the conjugated bridge induces the increased absorption wavelength as well as the more negative EHOMO corresponding to the bigger driving force $(E_{I^-/I^-_3}-E_{HOMO})$ for dye reduction, which together improve the photovoltaic performance of TA-DM-CA, although there is a decline of the open circuit voltage caused by the more negative $E_{LUMO}$.