• 제목/요약/키워드: open water test

Search Result 290, Processing Time 0.03 seconds

Study on tunnel geometry protecting a propeller using potential based panel method (포텐셜 기저 패널법에 의한 프로펠러 보호터널의 형상변화에 관한 연구)

  • Suh, Sung-Bu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.614-621
    • /
    • 2007
  • The fishing boat propulsion system employing the modified stern shape and the tunnel to protect a propeller is developed to increase the cruise speed and reduce he problem resulting from the open propeller accidentally catching the waste net and able on the sea. Using 3 different tunnel types, the model test was performed in the circular water channel and the panel method based on the potential theory is applied to analyze the open water performance of the propeller. In the numerical analysis using he potential-based panel method, it calculates the hydrodynamic interaction between the propeller and the tunnel and evaluates the effect of the tunnel geometry. From the numerical and experimental results differing tunnel geometries, the propulsion efficiency is increased by the larger diameter of the inlet than the outlet of the tunnel and the smaller gap between the propeller tip and the tunnel internal surface. These results provide the information of the propeller system with the tunnel and the hydrodynamic interaction between the propeller and the tunnel.

On Propeller Performance of DTC Post-Panamax Container Ship

  • Kinaci, Omer Kemal;Kukner, Abdi;Bal, Sakir
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.2
    • /
    • pp.77-89
    • /
    • 2013
  • The propeller performance has been investigated using a benchmark Duisburg Test Case ship with RANSE. First, the hydrodynamic characteristics of propeller in case of open water have been analyzed by a commercial CFD program and the results are compared with those of experimental data. Later, the flow around the bare hull has been solved and the frictional resistance value and form factor of the ship have been obtained and compared with those of ITTC57 formulation and experimental results for validation. The free surface effect has been ignored. A good agreement has been obtained between the results of RANSE and experiments at both stages. Then the ship - propeller interaction problem was solved by RANSE and the differences in thrust, torque and efficiency of propeller as compared with the open-water numerical results have been discussed.

RANS ANALYSES OF THE TIP VORTEX FLOW OF A MARINE PROPELLER (RANS법을 이용한 선박 프로펠러 날개 끝 보오텍스 유동 해석)

  • Park, I.R.
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.62-69
    • /
    • 2016
  • It has been highly demanded to improve the accuracy of CFD(Computational Fluid Dynamics) methods for the assessment of the hydrodynamic performance of marine propellers in cavitating and non-cavitating flows. This paper presents a validation study on the numerical simulation of the tip vortex flow of a non-cavitating marine propeller SVA VP1304. The calculations are carried out by using the Reynolds averaged Navier-Stokes(RANS) approach, where the Reynolds Stress Model(RSM) is used for turbulence closure. The present paper contains a grid dependence test for the propeller open water simulations and a special emphasis is placed on conducting a local grid adaptation on the blade tip and in the tip vortex to reasonably reproduce the velocity and the pressure in the tip vortex flow field. The numerical results are compared with the experimental validation data, which are published in the second International Symposium on Marine Propulsors 2011(SMP'11). The present numerical results show a reasonable agreement with the experiments.

Fully Unstructured Mesh based Computation of Viscous Flow around Marine Propellers (비정렬격자를 이용한 프로펠러 성능 및 주위 유동해석)

  • Kim, Min-Geon;Ahn, Hyung Taek;Lee, Jin-Tae;Lee, Hong-Gi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.2
    • /
    • pp.162-170
    • /
    • 2014
  • A CFD(Computational Fluid Dynamics) analysis is presented to predict hydrodynamic characteristics of a marine propeller. A commercial RANS(Reynolds Averaged Navier-Stokes equation) solver, namely FLUENT, is utilized in conjunction with fully unstructured meshes around rotating propeller. Mesh generation process is greatly accelerated by using fully unstructured meshes composed of both isotropic and anisotropic tetrahedral elements. The anisotropic tetrahedral elements were used in the flow domain near the blade and shaft, where the viscous effect is important, having complex shape yet resolving the thin boundary layers. For other regions, isotropic tetrahedral elements are utilized. Two different approaches simulating rotational effect of the propeller are employed, namely Moving reference frame technique for steady simulation, and Sliding mesh technique for unsteady simulation. Both approaches are applied to the propeller open water (POW) test simulation. The current results, which are thrust and torque coefficients, are compared with available experimental data.

Prediction of Resistance and Planing Attitude for Prismatic Planing Hull using OpenFOAM (OpenFOAM을 이용한 주형체 활주선의 저항 및 항주자세 추정)

  • Shi, XiangYu;Zhang, Yang;Yum, Deuk-joon
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.313-321
    • /
    • 2019
  • The prediction of the hydrodynamic performance of a planing hull vessel is an important and challenging topic for computational fluid dynamic (CFD) applications to naval hydrodynamics. In this paper, the resistance and planing attitude analysis for a Fridsma hull, which is a prismatic planing hull, in still water are numerically studied using OpenFOAM. OpenFOAM is an open source code package based on C++ libraries and the finite volume method (FVM) for the discretization of the RANS equation. The volume of fluid method (VOF) is used to capture the water-air interface and the SST ${\kappa}-{\omega}$ model is used for the turbulence simulation. The overset mesh method is used to capture the large motion of the hull at higher speeds. Before the extensive analysis, uncertainty analyses using various time steps and grid sizes were performed for one ship speed case of Fn = 1.19. The results of the present study are compared with those of a model test, other CFD research, and Savitsky's empirical formula. The results of the present study, following the trend of other CFD results, slightly over predict the resistance and under predict the sinkage and, more significantly, the trim.

Advancing Reproducibility in Hydrological Modeling: Integration of Open Repositories, Cloud-Based JupyterHub, and Model APIs (온라인저장소, 클라우드기반 JupyterHub와 모델 APIs를 활용한 수자원 모델링의 재현성 개선)

  • Choi, Young Don
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.118-118
    • /
    • 2022
  • 지속적인 학문의 발전을 위해서는 선행연구에 대한 재현성이 무엇보다도 중요하다고 할 수 있다. 하지만 컴퓨터와 소프트웨어의 급속한 발달로 인한 컴퓨터 환경의 다양화, 분석 소프트웨어의 지속적 최신화로 인해서 최근 구축된 모델도 짧게는 몇 달, 길게는 1~2년후면 다양한 에러로 인하여 재현성이 불가능해지고 있다. 이러한 재현성의 극복을 위해서 온라인을 통한 데이터와 소스코드의 공유의 필요성이 제시되고 있으나, 실제로는 개인마다 컴퓨터 환경, 버전, 소프트웨어 설치에 필요한 라이브러리의 버전 또는 디렉토리 등이 달라 단순히 온라인을 통한 데이터와 소스코드의 공유만으로 재현성을 개선하기는 힘든 것이 현실이다. 따라서 이러한 컴퓨터 모델링 환경의 공유는 과거의 형태와 같이 데이터, 소스코드와 매뉴얼의 공유만으로 불가능하다고 할 수 있다. 따라서 본 연구에서는 수자원 모델링의 재현성 개선을 위해 1) 온라인 저장소, 2) 클라우드기반 JupyterHub 모델링 환경과 3) 모델 APIs 3개의 핵심 구성요소를 제시하고, 최근 미국에서 개발된SUMMA(Structure for Unifying Multiple Modeling Alternative) 수자원 모델에 적용하여 재현성 달성을 위한 3개의 핵심 구성요소의 필요성과 용이성을 검증하였다. 첫 번째, 데이터와 모델의 온라인 공유는 FAIR(Findable, Accessible, Interoperable, Reusable) 원칙으로 개발된 수자원분야의 대표적인 온라인 저장소인 HydroShare를 활용하여 모델입력자료를 메타데이터와 함께 공유하였다. 두 번째, HydroShare에서 Web App의 형태로 제공되는 클라우드기반 JupyterHub환경인 CUAHSI JupyterHub(CJH)와 일루노이대학에서 제공하는 CyberGIS-Jupyter for water JupyterHub(CJW)환경에 수자원모델링 환경을 컨테이너(Docker) 환경을 통해 구축·공유하였다. 마지막으로, 클라우드에서 수자원모델의 효율적 이용을 위해 Python기반의SUMMA모델 API인 pySUMMA를 개발·공유하였다. 이와같이 구축된 3개의 핵심 구성요소를 이용하여 2015년 Water Resources Research에 게재된 SUMMA 논문의 9개 Test Cases 중에서 5개를 누구나 쉽게 재현할 수 있음을 증명하였다. 재현성의 중요성에 대한 인식의 증가로 Open과 Transparent Hydrology에 대한 요구가 증대되고 있으며, 이를 위해서 클라우드 기반의 모델링 환경구축 및 제공이 확대되고 있다. 본 연구에서 제시한 HydroShare와 같은 온라인 저장소, CJH와 CJW와 같은 클라우드기반 모델링환경, 모델의 효율적 이용을 위한 모델 APIs는 급속도로 발달하고 있는 컴퓨터 및 소프트웨어 환경에서 핵심구성요소이며, 연구의 재현성 개선을 통해 수자원공학 발전에 기여할 것으로 기대된다.

  • PDF

CJM Grouting to Reduce the Permeability in Alluvium (충적층 차수벽으로서 CJM Grouting)

  • Chun, Byung-Sik;Yang, Hyung-Chil
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.253-263
    • /
    • 2005
  • There were no cases to use CJM Grouting to Reduce the Permeability of open-cut in Alluvium adjacent to Han River. In this paper, the applicability of CJM Grouting to Reduce the Permeability in Alluvium is reasonably estimated by in-situ Permeability test and coring. It is known that the range of improvement is decided by injection pressure, time of high pressure water and by slump, injection pressure of injection materials.

  • PDF

Experimental Study of the POW Characteristics using High-capacity Inclined-shaft Dynamometer (고용량 경사류용 동력계를 이용한 프로펠러 단독시험 특성의 실험적 연구)

  • Ahn, Jong-Woo;Kim, Ki-Sup;Park, Young-Ha
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.2
    • /
    • pp.168-174
    • /
    • 2019
  • In order to investigate Propeller Open Water (POW) characteristics for the high-speed propeller in Large Cavitation Tunnel (LCT), the high-capacity inclined-shaft dynamometer was designed and manufactured. Its measuring capacities of thrust and torque are ${\pm}2200N$ and ${\pm}120N-m$, respectively. The driving motor is directly connected to the propeller shaft. Inclined angle of the propeller shaft can be adjusted up to ${\pm}10^{\circ}$. As the pressure inside LCT can be adjusted in the range of 0.1~3.0bar, we can carry out the POW test at high Reynolds number (above $1.0{\times}10^6$) without propeller cavitation and the cavitation test in uniform flow. After the new dynamometer setup in LCT, the Reynolds number variation test and propeller open-water test were conducted at the inclined angle of $0^{\circ}$ and $6^{\circ}$. The present POW results of the new dynamometer are compared with those of the existing high-capacity dynamometer in LCT and of the dynamometer in the towing-tank. Through systematic model tests and comparison with their results, the performance of the new inclined-shaft dynamometer was verified. It is thought the POW test for the high-speed propeller should be better conducted at high Reynolds number.

Soil water retention and vegetation survivability improvement using microbial biopolymers in drylands

  • Tran, An Thi Phuong;Chang, Ilhan;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.17 no.5
    • /
    • pp.475-483
    • /
    • 2019
  • Vegetation cover plays a vital role in stabilizing the soil structure, thereby contributing to surface erosion control. Surface vegetation acts as a shelterbelt that controls the flow velocity and reduces the kinetic energy of the water near the soil surface, whereas vegetation roots reinforce the soil via the formation of root-particle interactions that reduce particle detachment. In this study, two vegetation-testing trials were conducted. The first trial was held on cool-season turfgrasses seeded in a biopolymer-treated site soil in an open greenhouse. At the end of the test, the most suitable grass type was suggested for the second vegetation test, which was conducted in an environmental control chamber. In the second test, biopolymers, namely, starch and xanthan gum hydrogels (pure starch, pure xanthan gum, and xanthan gum-starch mixtures), were tested as soil conditioners for improving the water-holding capacity and vegetation growth in sandy soils. The results support the possibility that biopolymer treatments may enhance the survival rate of vegetation under severe drought environments, which could be applicable for soil stabilization in arid and semiarid regions.

Numerical wind load estimation of offshore floating structures through sustainable maritime atmospheric boundary layer

  • Yeon, Seong Mo;Kim, Joo-Sung;Kim, Hyun Joe
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.819-831
    • /
    • 2020
  • Wind load is one of the major design loads for the hull and mooring of offshore floating structures, especially due to much larger windage area above water than under water. By virtue of extreme design philosophy, fully turbulent flow assumption can be justified and the hydrodynamic characteristics of the flow remain almost constant which implies the wind load is less sensitive to the Reynolds number around the design wind speed than wind profile. In the perspective of meteorology, wind profile used for wind load estimation is a part of Atmospheric Boundary Layer (ABL), especially maritime ABL (MBL) and have been studied how to implement the profile without losing turbulence properties numerically by several researchers. In this study, the MBL is implemented using an open source CFD toolkit, OpenFOAM and extended to unstable ABL as well as neutral ABL referred to as NPD profile. The homogeneity of the wind profile along wind direction is examined, especially with NPD profile. The NPD profile was applied to a semi-submersible rig and estimated wind load was compared with the results from wind tunnel test.