• Title/Summary/Keyword: open voltage($V_{sc}$)

Search Result 72, Processing Time 0.033 seconds

Effect of TiO2 Coating Thickness on Photovoltaic Performance of Dye-sensitized Solar Cells Prepared by Screen-printing Using TiO2 Powders

  • Lee, Deuk Yong;Cho, Hun;Kang, Daejun;Kang, Jong-Ho;Lee, Myung-Hyun;Kim, Bae-Yeon;Cho, Nam-Ihn
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.362-366
    • /
    • 2014
  • Dye-sensitized solar cells (DSSCs) were synthesized using a $0.25cm^2$ area of a $TiO_2$ nanoparticle layer as the electrode and platinum (Pt) as the counter electrode. The $TiO_2$ nanoparticle layers (12 to 22 ${\mu}m$) were screen-printed on fluorine-doped tin oxide glass. Glancing angle X-ray diffraction results indicated that the $TiO_2$ layer is composed of pure anatase with no traces of rutile $TiO_2$. The Pt counter electrode and the ruthenium dye anchored $TiO_2$ electrode were then assembled. The best photovoltaic performance of DSSC, which consists of a $18{\mu}m$ thick $TiO_2$ nanoparticle layer, was observed at a short circuit current density ($J_{sc}$) of $14.68mA{\cdot}cm^{-2}$, an open circuit voltage ($V_{oc}$) of 0.72V, a fill factor (FF) of 63.0%, and an energy conversion efficiency (${\eta}$) of 6.65%. It can be concluded that the electrode thickness is attributed to the energy conversion efficiency of DSSCs.

The Photovoltaic Properties & Fabrication of $n^{+}$-p InP Homojunction Diodes ($n^{+}$-p InP 동종접합 다이오드의 제작과 광기전력 특성)

  • 최준영;문동찬;김선태
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.05a
    • /
    • pp.110-113
    • /
    • 1992
  • $n^{+}$-p homojunction InP diodes were fabricated using thermal diffusion of Sulfur into p-type InP substrates(Zn doped, LEC grown, p=2.3${\times}$10$^{16}$c $m^{-3}$). The Sulfur diffusion was carried out at 550$^{\circ}C$, 600$^{\circ}C$, 700$^{\circ}C$ for 4 hours in a sealed quartz ampule(~2ml in volume) containing 5mg I $n_2$ $S_3$ and Img of red phosphorus. The formed junction depth was below 0.5$\mu\textrm{m}$. After the removal of diffused layer on the rear surface of the wafer, the beak ohmic contacts to the p-side were made with a vacuum evaporation of An-Zn(2%) followed by an annealing at 450$^{\circ}C$ for 5 minutes in flowing Ar gas. The front contacts were made with a vacuum evaporation of Au-Ge(12%) followed by an annealing at 500$^{\circ}C$ for 3 minutes in flowing Ar gas. The remarkable sprctral response of the cells obtained at the region of 6000-8000${\AA}$ region. The open circuit voltage $V_{oc}$ , short circuit current density $J_{sc}$ , fill factor and conversion efficiency η of the fabricated pattern solar cells(diffusion condition : at 700$^{\circ}C$ for 4 hours) were 0.660V, 14.04㎃/$\textrm{cm}^2$, 0.6536 and 10.09%, respectively.y.

  • PDF

Effect of Annealing Process Pressure Over Atmospheric Pressure on Cu2ZnSn(S,Se)4 Thin Film Growth (대기압 이상의 열처리 공정압력이 Cu2ZnSn(S,Se)4(CZTSSe) 박막 성장에 미치는 영향)

  • Lee, Byeong Hoon;Yoo, Hyesun;Jang, Jun Sung;Lee, InJae;Kim, Jihun;Jo, Eunae;Kim, Jin Hyeok
    • Korean Journal of Materials Research
    • /
    • v.29 no.9
    • /
    • pp.553-558
    • /
    • 2019
  • $Cu_2ZnSn(S,Se)_4(CZTSSe)$ thin film solar cells areone of the most promising candidates for photovoltaic devices due to their earth-abundant composition, high absorption coefficient and appropriate band gap. The sputtering process is the main challenge to achieving high efficiency of CZTSSe solar cells for industrialization. In this study, we fabricated CZTSSe absorbers on Mo coated soda lime glass using different pressures during the annealing process. As an environmental strategy, the annealing process is performed with S and Se powder, without any toxic $H_2Se$ and/or $H_2S$ gases. Because CZTSSe thin films have a very narrow stable phase region, it is important to control the condition of the annealing process to achieve high efficiency of the solar cell. To identify the effect of process pressure during the sulfo-selenization, we experiment with varying initial pressure from 600 Torr to 800 Torr. We fabricate a CZTSSe thin film solar cell with 8.24 % efficiency, with 435 mV for open circuit voltage($V_{OC}$) and $36.98mA/cm^2$ for short circuit current density($J_{SC}$), under a highest process pressure of 800 Torr.

Synthesis and Photovoltaic Properties of New π-conjugated Polymers Based on 2,3-dimethyl-5,8-dithiophen-2-yl-quinoxaline (2,3-Dimethyl-5,8-dithiophen-2-yl-quinoxaline을 기본 골격으로 한 새로운 고분자 물질의 합성 및 광전변환특성)

  • Shin, Woong;Park, Jeong Bae;Park, Sang Jun;Jo, Mi Young;Suh, Hongsuk;Kim, Joo Hyun
    • Applied Chemistry for Engineering
    • /
    • v.22 no.1
    • /
    • pp.15-20
    • /
    • 2011
  • Poly[2,3-dimethyl-5,8-dithiophene-2-yl-quinoxaline-alt-9,9-dihexyl-9H-fluorene] (PFTQT) and poly[2,3-dimethyl-5,8-dithiophen-2-yl-quinoxaline-alt-10-hexyl-10H-phenothiazine (PPTTQT) based on 2,3-dimethyl-5,8-dithiophen-2-yl-quinoxaline weresynthesized by Suzuki coupling reaction. All polymers were soluble in common organic solvents such as chloroform, chlorobenzene, o-dichlorobenzene, tetrahydrofuran (THF) and toluene. The maximum absorption wavelength and band gap of PFTQT were 440 nm and 2.30 eV, and PPTTQT were 445 nm and 2.23 eV, respectively. The HOMO and LUMO energy level of PFTQT were -6.05 and -3.75 eV, and PPTTQT were -5,89 and -3.66 eV, respectively. The organic photovoltaic devices based on the blend of polymer and PCBM (1 : 2 by weight ratio) were fabricated. Efficiencies of devices were 0.24% (PFTQT) and 0.16% (PPTTQT), respectively. The short circuit current density ($J_{sc}$), fill factor (FF), and open circuit voltage ($V_{oc}$) of the device with PFTQT were $0.97mA/cm^2$, 29% and 0.86 V, and the device based on PPTTQT were $0.80mA/cm^2$, 28% and 0.71 V, 31% and 0.71 V, respectively, under air mass (AM) 1.5 G and 1 sun condition ($100mA/cm^2$).

Synthesis and Photovoltaic Properties of Alternating Conjugated Polymers Derived from Thiophene-Benzothiadiazole Block and Fluorene/Indenofluorene Units

  • Li, Jianfeng;Tong, Junfeng;Zhang, Peng;Yang, Chunyan;Chen, Dejia;Zhu, Yuancheng;Xia, Yangjun;Fan, Duowang
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.505-512
    • /
    • 2014
  • A new donor-accepter-donor-accepter-donor (D-A-D-A-D) type 2,1,3-benzothiadiazole-thiophene-based acceptor unit 2,5-di(4-(5-bromo-4-octylthiophen-2-yl)-2,1,3-benzothiadiazol-7-yl)thiophene ($DTBTTBr_2$) was synthesized. Copolymerized with fluorene and indeno[1,2-b]fluorene electron-rich moieties, two alternating narrow band gap (NBG) copolymers PF-DTBTT and PIF-DTBTT were prepared. And two copolymers exhibit broad and strong absorption in the range of 300-700 nm with optical band gap of about 1.75 eV. The highest occupied molecular orbital (HOMO) energy levels vary between -5.43 and -5.52 eV and the lowest unoccupied molecular orbital (LUMO) energy levels range from -3.64 to -3.77 eV. Potential applications of the copolymers as electron donor material and $PC_{71}BM$ ([6,6]-phenyl-$C_{71}$ butyric acid methyl ester) as electron acceptors were investigated for photovoltaic solar cells (PSCs). Photovoltaic performances based on the blend of PF-DTBTT/$PC_{71}BM$ (w:w; 1:2) and PIF-DTBTT/$PC_{71}BM$ (w:w; 1:2) with devices configuration as ITO/PEDOT: PSS/blend/Ca/Al, show an incident photon-to-current conversion efficiency (IPCE) of 2.34% and 2.56% with the open circuit voltage ($V_{oc}$) of 0.87 V and 0.90 V, short circuit current density ($J_{sc}$) of $6.02mA/cm^2$ and $6.12mA/cm^2$ under an AM1.5 simulator ($100mA/cm^2$). The photocurrent responses exhibit the onset wavelength extending up to 720 nm. These results indicate that the resulted narrow band gap copolymers are viable electron donor materials for polymer solar cells.

Fabrication of Ag Grid Patterned PET Substrates by Thermal Roll-Imprinting for Flexible Organic Solar Cells (가열롤 임프린팅 방법을 이용한 유연 유기태양전지용 Ag 그리드 패턴 PET 기판 제작)

  • Cho, Jung Min;Jo, Jeongdai;Kim, Taeil;Kim, Dong Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.11
    • /
    • pp.993-998
    • /
    • 2014
  • Silver (Ag) grid patterned PET substrates were manufactured by thermal roll-imprinting methods. We coated highly conductive layer (HCL) as a supply electrode on the Ag grid patterned PET in the three kinds of conditions. One was no-HCL without conductive PEDOT:PSS on the Ag grid patterned PET substrate, another was thin-HCL coated with ~50 nm thickness of conductive PEDOT:PSS on the Ag grid PET, and the other was thick-HCL coated with ~95 nm thickness of conductive PEDOT:PSS. These three HCLs in order showed 73.8%, 71.9%, and 64.7% each in transmittance, while indicating $3.84{\Omega}/{\Box}$, $3.29{\Omega}/{\Box}$, and $2.65{\Omega}/{\Box}$ each in sheet resistance. Fabrication of organic solar cells (OSCs) with HCL Ag grid patterned PET substrates showed high power conversion efficiency (PCE) on the thin-HCL device. The thick-HCL device decreased efficiency due to low open circuit voltage ($V_{OC}$). And the Ag grid pattern device without HCL had the lowest energy efficiency caused by quite low short current density ($J_{SC}$).

Computer simulation for the effects of inserting the textured ZnO and buffer layer in the rear side of ZnO/nip-SiC: H/metal type amorphous silicon solar cells (Zno/nip-SiC:H/금속기판 구조 비정질 실리콘 태양전지의 후면 ZnO 및 완충층 삽입 효과에 대한 컴퓨터 수치해석)

  • Jang, Jae-Hoon;Lim, Koeng-Su
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1277-1279
    • /
    • 1994
  • In the structure of ZnO/nip-SiC: H/metal substrate amorphous silicon (a-Si:H) solar cells, the effects of inserting a rear textured ZnO in the p-SiC:H/metal interface and a graded bandgap buffer layer in the i/p-SiC:H have been analysed by computer simulation. The incident light was taken to have an intensity of $100mW/cm^2$(AM-1). The thickness of the a-Si:H n, ${\delta}$-doped a-SiC:H p, and buffer layers was assumed to be $200{\AA},\;66{\AA}$, and $80{\AA}$, respectively. The scattering coefficients of the front and back ZnO were taken to be 0.2 and 0.7, respectively. Inserting the rear buffer layer significantly increases the open circuit voltage($V_{oc}$) due to reduction of the i/p interface recombination rate. The use of textured ZnO markedly improves collection efficiency in the long wavelengths( above ${\sim}550nm$ ) by back scattering and light confinement effects, resulting in dramatic enhancement of the short circuit current density($J_{sc}$). By using the rear buffer and textured ZnO, the i-layer thickness of the ceil for obtaining the maximum efficiency becomes thinner(${\sim}2500{\AA}$). From these results, it is concluded that the use of textured ZnO and buffer layer at the backside of the ceil is very effective for enhancing the conversion efficiency and reducing the degradation of a-Si:H pin-type solar cells.

  • PDF

The Effect of a Sol-gel Formed TiO2 Blocking Layer on the Efficiency of Dye-sensitized Solar Cells

  • Cho, Tae-Yeon;Yoon, Soon-Gil;Sekhon, S.S.;Kang, Man-Gu;Han, Chi-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3629-3633
    • /
    • 2011
  • The effect of a dense $TiO_2$ blocking layer prepared using the sol-gel method on the performance of dye-sensitized solar cells was studied. The blocking layer formed directly on the working electrode, separated it from the electrolyte, and prevented the back transfer of electrons from the electrode to the electrolyte. The dyesensitized solar cells were prepared with a working electrode of fluorine-doped tin oxide glass coated with a blocking layer of dense $TiO_2$, a dye-attached mesoporous $TiO_2$ film, and a nano-gel electrolyte, and a counter electrode of Pt-deposited FTO glass. The gel processing conditions and heat treatment temperature for blocking layer formation affected the morphology and performance of the cells, and their optimal values were determined. The introduction of the blocking layer increased the conversion efficiency of the cell by 7.37% for the cell without a blocking layer to 8.55% for the cell with a dense $TiO_2$ blocking layer, under standard illumination conditions. The short-circuit current density ($J_{sc}$) and open-circuit voltage ($V_{oc}$) also were increased by the addition of a dense $TiO_2$ blocking layer.

Photovoltaic Characteristic of Thin Films Based on MEH-PPV/DFPP Blends

  • Mun, Ji-Seon;Kim, Su-Hyeon;Lee, Jae-U;Lee, Seok;Kim, Seon-Ho;Kim, Dong-Yeong;Choe, Hye-Yeong;Yun, Seong-Cheol;Lee, Chang-Jin;Kim, Yu-Jin;Lee, Geung-Won;Byeon, Yeong-Tae
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2005.07a
    • /
    • pp.28-29
    • /
    • 2005
  • 본 논문에서는 MEH-PPV와 DFPP의 폴리머 물질을 이용하여 photovoltaic device가 제작되었고, 그림 1에 두 물질의 분자 구조가 보여진다. Photovoltaic cell의 전기-광학적 특성은 활성층의 폴리머 물질에 의해 결정된다. 이러한 특성을 알아보기 위해서 홉수 스펙트럼이 측정되었다. DFPP는 chloroform, chlorobenzen, THF, acetone에 잘 녹았으며, 본 논문에서는 chloroform이 용매로 사용되었다. 제작 공정은 다음과 같다. 인듐 주석 산화물 (ITO)이 증착된 유리기판은 photolithography 공정을 거친 후, 왕수(HNO$_{3}$ + HCL)로 식각됨으로서 전극의 패턴이 제작되었다. 그리고 ITO 전극 패턴 된 유리기판 위에 PEDOT (CH8000, Baytron)이 코팅된 후 Ar이 주입되는 Convection Oven을 이용하여 120$^{\circ}$C에서 2시간 동안 열처리되어 수분이 제거되었다. 활성층에는 MEH-PPV와 DFPP가 9:1과 2.33:1로 혼합된 폴리머가 사용되었고, 이것은 0.3 %w.t.가 되도록 chloroform에 넣어 5시간 동안 스핀바를 돌려서 용해되었다. 이 용액은 ITO 전극 패턴이 형성된 글라스 위에 3000 rpm으로 45 초간 스핀코팅 되었다. 이 때 얻어진 유기물 박막층은 80$^{\circ}$C의 Ar이 주입되는 convection oven에서 3시간 동안 경화되었다. 경화된 단층 유기물 박막층 위에 Li-Al이 1000 ${\AA}$의 두께로 증착되어 전극이 형성되었고, 이후 질소가 채워진 globe box에서 소자는 encapsulation되어 산소와 수분에 대한 영향으로부터 차단되었다. 상기의 공정으로 제작된 소자의 박막구조는 그림 2에서 보여진다. 그림 3은 MEH-PPV와 DFPP를 혼합했을 때의 흡수 스펙트럼이다. 최대 흡수 파장은 511 nm였다. 그리고 photovoltaic cell의 V-I 특성 결과가 그림 4와 같이 측정되었다. 측정에서는 300${\sim}$700 nm의 파장대를 갖는 태양광 모사계가 사용되었고, 셀의 면적은 10 mm$^{2}$였다. 그림 5의 I-V 특성으로부터 MEH-PPV와 DFPP가 9:1 로 혼합했을 때보다 2.33:1 로 혼합했을 때, photovoltaic device의 효율이 향상됨을 확인할 수 있다. 빛이 75 mW/cm$^{2}$ 의 세기로 조사될 때 9:1과 2.33:1로 혼합된 소자의 open circuit voltage (V$_{oc}$)는 비슷하지만, short circuit current Density (J$_{sc}$)는 각각 -1.39 ${\mu}$A/cm$^{2}$ 와 -3.72${\mu}$A/cm$^{2}$ 로 약 2.7배 정도 증가되었음을 볼 수 있다. 이러한 결과를 통해 electron acceptor인 DFPP의 비율이 높아질수록 photovoltaic cell의 conversion efficiency가 더 크게 됨을 확인할 수 있다. 그러므로 효율이 최대가 되는 두 폴리머의 혼합 비율이 최적화되는 조건을 찾는 것은 매우 중요한 연구가 될 것이다.

  • PDF

Improvement of Cu2ZnSnS4 Solar Cell Characteristics with Zn(Ox,S1-x) Buffer Layer (Zn(Ox,S1-x) 버퍼층 적용을 통한 Cu2ZnSnS4 태양전지 특성 향상)

  • Yang, Kee-Jeong;Sim, Jun-Hyoung;Son, Dae-Ho;Lee, Sang-Ju;Kim, Young-Ill;Yoon, Do-Young
    • Korean Chemical Engineering Research
    • /
    • v.55 no.1
    • /
    • pp.93-98
    • /
    • 2017
  • This experiment investigated characteristic changes in a $Cu_2ZnSnS_4$(CZTS) solar cell by applying a $Zn(O_x,S_{1-x})$ butter layer with various compositions on the upper side of the absorber layer. Among the four single layers such as $Zn(O_{0.76},S_{0.24})$, $Zn(O_{0.56},S_{0.44})$, $Zn(O_{0.33},S_{0.67})$, and $Zn(O_{0.17},S_{0.83})$, the $Zn(O_{0.76},S_{0.24})$ buffer layer was applied to the device due to its bandgap structure for suppressing electron-hole recombination. In the application of the $Zn(O_{0.76},S_{0.24})$ buffer layer to the device, the buffer layer in the device showed the composition of $Zn(O_{0.7},S_{0.3})$ because S diffused into the buffer layer from the absorber layer. The $Zn(O_{0.7},S_{0.3})$ buffer layer, having a lower energy level ($E_V$) than a CdS buffer layer, improved the $J_{SC}$ and $V_{OC}$ characteristics of the CZTS solar cell because the $Zn(O_{0.7},S_{0.3})$ buffer layer effectively suppressed electron-hole recombination. A substitution of the CdS buffer layer by the $Zn(O_{0.7},S_{0.3})$ buffer layer improved the efficiency of the CZTS solar cell from 2.75% to 4.86%.