• Title/Summary/Keyword: open clusters and stellar associations: general

Search Result 5, Processing Time 0.033 seconds

207 NEW OPEN STAR CLUSTERS WITHIN 1 KPC FROM GAIA DATA RELEASE 2

  • Sim, Gyuheon;Lee, Sang Hyun;Ann, Hong Bae;Kim, Seunghyeon
    • Journal of The Korean Astronomical Society
    • /
    • v.52 no.5
    • /
    • pp.145-158
    • /
    • 2019
  • We conducted a survey of open clusters within 1 kpc from the Sun using the astrometric and photometric data of the Gaia Data Release 2. We found 655 cluster candidates by visual inspection of the stellar distributions in proper motion space and spatial distributions in l - b space. All of the 655 cluster candidates have a well defined main-sequence except for two candidates if we consider that the main sequence of very young clusters is somewhat broad due to differential extinction. Cross-matching of our 653 open clusters with known open clusters in various catalogs resulted in 207 new open clusters. We present the physical properties of the newly discovered open clusters. The majority of the newly discovered open clusters are of young to intermediate age and have less than ~50 member stars.

A PHOTOMETRIC STUDY OF FIVE OPEN CLUSTERS IN THE SDSS

  • Ryu, Jin-Hyuk;Lee, Myung-Gyoon
    • Journal of The Korean Astronomical Society
    • /
    • v.44 no.5
    • /
    • pp.177-193
    • /
    • 2011
  • We present a photometric study of five open clusters (Czernik 5, Alessi 53, Berkeley 49, Berkeley 84, and Pfleiderer 3) in the Sloan Digital Sky Survey. The position and size of these clusters are determined using the radial number density profiles of the stars, and the member stars of the clusters are selected using the proper motion data in the literature. We estimate the reddening, distance and age of the clusters based on the isochrone fitting in the color-magnitude diagram. The foreground reddenings for these clusters are estimated to be E(B - V ) = 0.71 - 1.55 mag. The distances to these clusters are derived to be 2.0 - 4.4 kpc, and their distances from the Galactic center range from 7.57 kpc to 12.35 kpc. Their ages are in the range from 250 Myr to 1 Gyr. Berkeley 49 and Berkeley 84 are located in the Orion spur, Czernik 5 is in the Perseus arm, and Pfleiderer 3 and Alessi 53 are located beyond the Perseus arm.

PROPERTIES OF OPEN CLUSTERS CONTAINING BLUE STRAGGLERS

  • Lee, Hyun-Uk;Chang, Heon-Young
    • Journal of The Korean Astronomical Society
    • /
    • v.50 no.3
    • /
    • pp.51-59
    • /
    • 2017
  • The presence of blue stragglers pose challenges to standard stellar evolution theory, in the sense that explaining their presence demands a complex interplay between stellar evolution and cluster dynamics. In the meantime, mass transfer in binary systems and stellar collisions are widely studied as a blue straggler formation channel. We explore properties of the Galactic open clusters where blue stragglers are found, in attempting to estimate the relative importance of these two favored processes, by comparing them with those resulting from open clusters in which blue stragglers are absent as of now. Unlike previous studies which require a sophisticated process in understanding the implication of the results, this approach is straightforward and has resulted in a supplementary supporting evidence for the current view on the blue straggler formation mechanism. Our main findings are as follows: (1) Open clusters in which blue stragglers are present have a broader distribution with respect to the Z-axis pointing towards the North Galactic Pole than those in which blue stragglers are absent. The probability that two distributions with respect to the Z-axis are drawn from the same distribution is 0.2%. (2) Average values of $log_10(t)$ of the clusters with blue stragglers and those without blue stragglers are $8.58{\pm}0.232$ and $7.52{\pm}0.285$, respectively. (3) The clusters with blue stragglers tend to be relatively redder than the others, and are distributed broader in colors. (4) The clusters with blue stragglers are likely brighter than those without blue stragglers. (5) Finally, blue stragglers seem to form in condensed clusters rather than simply dense clusters. Hence, we conclude that mass transfer in binaries seems to be a relatively important physical mechanism of the generation of blue stragglers in open clusters, provided they are sufficiently old.

SEJONG OPEN CLUSTER SURVEY (SOS). 0. TARGET SELECTION AND DATA ANALYSIS

  • Sung, Hwankyung;Lim, Beomdu;Bessell, Michael S.;Kim, Jinyoung S.;Hur, Hyeonoh;Chun, Moo-Young;Park, Byeong-Gon
    • Journal of The Korean Astronomical Society
    • /
    • v.46 no.3
    • /
    • pp.103-123
    • /
    • 2013
  • Star clusters are superb astrophysical laboratories containing cospatial and coeval samples of stars with similar chemical composition. We initiate the Sejong Open cluster Survey (SOS) - a project dedicated to providing homogeneous photometry of a large number of open clusters in the SAAO Johnson-Cousins' UBV I system. To achieve our main goal, we pay much attention to the observation of standard stars in order to reproduce the SAAO standard system. Many of our targets are relatively small sparse clusters that escaped previous observations. As clusters are considered building blocks of the Galactic disk, their physical properties such as the initial mass function, the pattern of mass segregation, etc. give valuable information on the formation and evolution of the Galactic disk. The spatial distribution of young open clusters will be used to revise the local spiral arm structure of the Galaxy. In addition, the homogeneous data can also be used to test stellar evolutionary theory, especially concerning rare massive stars. In this paper we present the target selection criteria, the observational strategy for accurate photometry, and the adopted calibrations for data analysis such as color-color relations, zero-age main sequence relations, Sp - MV relations, Sp - $T_{eff}$ relations, Sp - color relations, and $T_{eff}$ - BC relations. Finally we provide some data analysis such as the determination of the reddening law, the membership selection criteria, and distance determination.

THE ARCHES CLUSTER MASS FUNCTION

  • Kim, Sung-Soo S.;Figer, Donald F.;Kudritzki, Rolf P.;Naharro, F.
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.4
    • /
    • pp.153-155
    • /
    • 2007
  • We have analyzed H and $K_s$-band images of the Arches cluster obtained using the NIRC2 instrument on Keck with the laser guide star adaptive optics (LGS AO) system. With the help of the LGS AO system, we were able to obtain the deepest ever photometry for this cluster and its neighborhood, and derive the background-subtracted present-day mass function (PDMF) down to $1.3M_{\bigodot}$ for the 5"-9" annulus of the cluster. We find that the previously reported turnover at $6M_{\bigodot}$ is simply due to a local bump in the mass function (MF), and that the MF continues to increase down to our 50 % completeness limit ($1.3M_{\bigodot}$) with a power-law exponent of ${\Gamma}$ = -0.91 for the mass range of 1.3 < M/$M_{\bigodot}$ < 50. Our numerical calculations for the evolution of the Arches cluster show that the ${\Gamma}$ values for our annulus increase by 0.1-0.2 during the lifetime of the cluster, and thus suggest that the Arches cluster initially had ${\Gamma}$ of $-1.0{\sim}-1.1$, which is only slightly shallower than the Salpeter value.