• Title/Summary/Keyword: online solid phase extraction

Search Result 5, Processing Time 0.022 seconds

Evaluation and application of pretreatment methods for pharmaceuticals and personal care products in the solid phase of sewage samples (하수처리시설 고상시료 중 잔류의약물질 분석을 위한 전처리법 평가 및 적용)

  • Park, Junwon;Kim, Changsoo;Ju, Byoungkyu;Lee, Wonseok;Chung, Hyenmi;Jeong, Dong-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.6
    • /
    • pp.559-572
    • /
    • 2018
  • The aim of this study was to evaluate pretreatment methods for 27 pharmaceuticals and personal care products (PPCPs) in various sewage samples using a modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) and online solid-phase extraction with LC-MS/MS. Extraction efficiencies of PPCPs in the solid phase under different experimental conditions were evaluated, showing that the highest recoveries were obtained with the addition of sodium sulfate and ethylenediaminetetraacetic acid disodium salt dehydrate in acidified conditions. The recoveries of target compounds ranged from 91 to 117.2% for liquid samples and from 61.3 to 137.2% for solid samples, with a good precision. The methods under development were applied to sewage samples collected in two sewage treatment plants (STPs) to determine PPCPs in liquid and solid phases. Out of 27 PPCPs, more than 19 compounds were detected in liquid samples (i.e., influent and effluent) of two STPs, with concentration ranges of LOQ-33,152 ng/L in influents and LOQ-4,523 ng/L in effluents, respectively. In addition, some PPCPs such as acetylsalicylic acid, ibuprofen, and ofloxacin were detected at high concentrations in activated sludge as well as in excess sludge. This methodology was successfully applied to sewage samples for the determination of the target compounds in STPs.

Determination of 4 Parabens in Human Urine by Online SPE and LC-MS/MS Techniques (온라인 고체상추출과 LC-MS/MS 기술을 이용한 소변 중 파라벤류 분석)

  • Kim, Jung Hoan;Kho, Young Lim;Kim, Pan Gyi;Jeong, Jee Yeon;Lee, Eun Hee;Lee, Seung-Youl;Nam, Hye-Seon;Rhee, Gyu-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.6
    • /
    • pp.561-567
    • /
    • 2012
  • Objectives: Parabens are widely used as antimicrobial agents in pharmaceuticals and cosmetics as well as by the food industry. Parabens have been reported to show weak estrogenic activity and be related to health effects such as allergic reactions and skin and breast cancer. We evaluated an online solid phase extraction (SPE) method coupled with LC-MS/MS technique using free and conjugated parent parabens in human urine for assessing human exposure to parabens. Methods: We employed LC/MS/MS through online solid phase extraction and column-switching techniques and analyzed free and conjugated parabens as biomarkers of human exposure. Four major parabens, methyl-paraben (MP), ethyl-paraben (EP), propyl-paraben (PP) and butyl-paraben (BP), were analyzed. Method validation was performed by sensitivity, accuracy, precision and comparison of the results of online SPE with offline SPE. Results: The limits of detection (LOD) were in the range of 0.2-2 ng/mL, and actual limits of quantification (LOQ) were in the range of 0.7-6 ng/mL urine, depending upon the compound. Accuracy was in the range of 98.3-106.4%, and precision was in the range of 1.3-8.7% (CV) depending upon the compound. We found a good correlation between the results of analysis by online SPE method and that by off-line SPE method. Conclusions: The online SPE method showed proper LOD and validated accuracy, precision and good correlation with the offline method for analyzing parabens in urine.

Fast and Accurate Determination of Algal Toxins in Water using Online Preconcentration and UPLC-Orbitrap Mass Spectrometry (온라인 시료주입과 UPLC-Orbitrap 질량분석법을 이용한 수질 조류독소의 고속분석방법 개발 및 환경시료적용)

  • Jang, Je-Heon;Kim, Yun-Seok;Choi, Jae-Won
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.843-850
    • /
    • 2012
  • Due to the fast response to algae bloom issue in drinking water treatment plant, very fast determination methodology for algal toxin is required. In this study, column switching technique based online preconcentration method was combined with high resolution full scan mass spectrometer to save sample preparation time and to obtain fast and accurate result. After parameter optimization of online preconcentration, 1mL filtered sample was directly injected to trap column with switching valve system. Next, target toxins are eluted by 98% acetonitrile and analysed with 150 - 1,100 amu scan range at 50,000 resolving power. Method detection limit (MDL) for microcystin-LR, the most toxic isomer, was 0.1 ng/mL and others such as microcystin-YR, microcystin-RR and nodularin were 0.08, 0.03 and 0.04 ng/mL, respectively. This is the best improved sensitivities with 1mL volume in the literature. Furthermore, due to the use of ultra pressure HPLC (UPLC), the whole method run was completed in 4 min. Real sample applications for 173 sample including 55 surface water and 118 treatment plant samples for raw and treated water could be done within 16 hours. In our calculation, this methodology is roughly 80% faster than the previous manual solid-phase extraction with LC-MS/MS method.

Quantification of seleno proteins in Korean blood serum using solid phase extraction and affinity chromatography-inductively coupled plasma/mass spectrometry (고체상 추출과 친화 크로마토 그라피-유도결합 플라즈마 질량분석법을 이용한 한국인 혈청에서의 셀레노 단백질 정량)

  • Ahn, Ji-Yun;Kwon, Hyo-Sik;Pak, Yong-Nam
    • Analytical Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.92-99
    • /
    • 2014
  • Interferences were removed using anion exchange solid phase extraction (AE SPE) in quantification of selenoproteins in Korean human blood serum with affinity high performance liquid chromatography (AF HPLC)-inductively coupled plasma/mass spectrometry (ICP/MS). The average selenium level obtained for healthy Koreans was $94.3{\pm}2.3ngg^{-1}$ using isotope dilution method. AE SPE was coupled to AF column to separate 3 selenoproteins, glutathione peroxidase GPx, selenoprotein SelP, and selenoalbumin SeAlb. Post column isotope dilution was employed to quantify the proteins. The certified reference material of human blood serum BCR-637 was analyzed to give total selenoprotein concentration of $85.4{\pm}3.4ngg^{-1}$, which agreed well with the reference value of $81{\pm}7ngg^{-1}$. The pooled concentration of GPx, SelP, and SeAlb from healthy Koreans (n=20) was $12.1{\pm}1.4ngg^{-1}$, $57.2{\pm}2.0ngg^{-1}$, and $20.0{\pm}1.9ngg^{-1}$, respectively. The sum of selenoproteins is $89.3ngg^{-1}$, which is about the same as the total selenium concentration of $94.3ngg^{-1}$. The fact suggests that selenium in blood serum is mostly consisted of selenoproteins. After the removal of interference, GPx showed a significant decrease (more than 50%) from $25.0ngg^{-1}$ to $12.1ngg^{-1}$. It was identified that the interference in blood serum was mostly from GPx and the use of AE SPE was proven to be efficient in eliminating Cl and Br that cause interference to GPx.

Simultaneous determination of carbaryl & organophosphorous pesticides in water by liquid chromatography-tandem mass spectrometry (LC/MS/MS를 이용한 수중의 카바릴·유기인계 농약 동시분석)

  • Park, Keun-Young;Shin, Jung-Chul;Pyo, Dongjin
    • Analytical Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.39-46
    • /
    • 2018
  • Carbaryl and seven organophosphorous pesticides were analyzed simultaneously using on-line solid phase extraction (on-line SPE) coupled with liquid chromatography tandem mass spectrometry (LC/MS/MS). The target pesticides are Carbaryl, Methyl demeton, Fenitrothion, Malathion, Parathion, Phenthoate, Diazinon, and EPN. This method includes the direct injection of $500{\mu}L$ in the water sample, a 15 min separation period using a rapid resolution liquid chromatography system with on-line SPE, and detection through electrospray ionization (ESI) positive mode. The percentage of recovery of all pesticides ranged from 85.3 % to 100 %. This method showed an accuracy of ${\geq}90.0%$, possessing limits of detection and quantification within 0.05 to $0.28{\mu}g/L$ and 0.16 to $0.89{\mu}g/L$, respectively. The correlation coefficients (r) for the calibration curves within a range of 0.5 to $8.0{\mu}g/L$ were higher than 0.99. The evaluation results showed the efficacy of the method for all contents, and no pesticides were detected in the water quality sample.