• 제목/요약/키워드: online recommendation service

검색결과 88건 처리시간 0.02초

소비자의 선택 과부하와 유사성 회피 성향이 온라인 추천 서비스의 혁신성과 사용 적합성 지각에 미치는 영향 (The Effect of Consumers' Choice Overload and Avoidance of Similarity on Innovativeness and Use Compatibility in Online Recommendation Service)

  • 윤남희;이하경;장세윤
    • 한국의류산업학회지
    • /
    • 제21권2호
    • /
    • pp.141-150
    • /
    • 2019
  • Online recommendation services help people search for an appropriate product among a huge assortment in stores that also minimize consumers' choice overload. People with a need for uniqueness are likely to prefer this online recommendation service based on individual needs and tastes. This study verifies the effect of consumers' choice overload and similarity avoidance in consumers' evaluation towards an online recommendation service with a focus on innovativeness and use comparability. Two-hundred consumers participated in this study and data were collected through an online survey firm. A mock retailer's webpage was created and showed six types of sneakers, which was presented as a result of product recommendation based on consumers' personal information. Data was analyzed using confirmatory factor analysis (CFA), analysis of variance (ANOVA), and regression analysis. The results show that people with a high similarity avoidance perceive an online recommendation service as an innovative and compatible service. They also perceive a high level of use compatibility for an online recommendation service, especially when it is difficult to choose a product under choice overload. Innovativeness and use compatibility of an online recommendation service increase behavioral intention. The results of this study can contribute to strategies to start online recommendation services from online retailers' websites that identify circumstances in which consumers can adopt innovative services in a positive manner.

Service Quality and Information Value of Online Travel Chat - A Case from KTO's 1330 Chat

  • Petya, Todorova;Hyemin, Kim;Chulmo, Koo
    • Journal of Smart Tourism
    • /
    • 제2권4호
    • /
    • pp.35-43
    • /
    • 2022
  • Tourism businesses use chat services to provide immediate customer support and to help users navigate within a website, but there are more outcomes of this interaction that should be examined. The current study aimed to discover if the online travel chat service quality and information value of the online travel chat service lead to user satisfaction with the service and visit intention to a recommended destination by Korea Tourism Organization's 1330 Live Chat. The results indicate that information value (functional and innovation) and online travel chat service quality (reliability, assurance, and security) lead to satisfaction with the live chat service and visit intention to a recommended destination. The results can benefit practitioners who want to expand and improve their customer service interaction and recommendations, and to scholars who study the relationship between customer services in tourism recommendation and sales context.

온라인 상품추천 서비스에 대한 소비자 사용 의도 -신뢰-몰입의 매개역할을 중심으로- (Consumers' Usage Intentions on Online Product Recommendation Service -Focusing on the Mediating Roles of Trust-commitment-)

  • 이하경;윤남희;장세윤
    • 한국의류학회지
    • /
    • 제42권5호
    • /
    • pp.871-883
    • /
    • 2018
  • This study tests consumer responses to online product recommendation service offered by a website. A product recommendation service refers to a filtering system that predicts and shows items that consumers would like to purchase based on their searches or pre-purchase information. The survey is conducted on 300 people in an age group between 20 and 40 years in a panel of an online survey firm. Data are analyzed using confirmatory factor analysis and structural equation modeling by AMOS 20.0. The results show that personalization quality does not have a significant effect on trust, but relationship quality and technology quality have a positive effect on trust. Three types of quality of recommendation service also have a positive effect on commitment. Trust and commitment are factors that increase service usage intentions. In addition, this study reveals the moderating effect of light users vs heavy users based on online shopping time. Light users show a negative effect of personalization quality on trust, indicating that they are likely to be uncomfortable to the service using personal information, compared to heavy users. This study also finds that trust vs commitment is an important factor increasing service usage intentions for heavy users vs light users.

의류상품의 온라인 대량고객화 제품추천 서비스에 대한 소비자의 감정적, 인지적 반응 (Product Recommendation Service in Online Mass Customization: Consumers' Cognitive and Affective Responses)

  • 문희강;이현화
    • 한국의류학회지
    • /
    • 제36권11호
    • /
    • pp.1222-1236
    • /
    • 2012
  • This study examined the effects of product recommendation services as an atmosphere for online mass customization shopping sites on consumers' cognitive and affective responses. We conducted a between-subject experimental study using a convenience sample of college students. A total of 196 participants provided usable responses for structural equation modeling analysis. The findings of the study support the S-O-R model for a product recommendation system as an element of the shopping environment with an influence on OMC product evaluations and arousal. The results showed that OMC product recommendation service positively affected cognitive and affective responses. The findings of the study suggest that OMC retailers might pay attention to the affective and cognitive responses of consumers through product recommendation services that can enhance product evaluations and OMC usage intentions.

Complexity and Algorithms for Optimal Bundle Search Problem with Pairwise Discount

  • Chung, Jibok;Choi, Byungcheon
    • 유통과학연구
    • /
    • 제15권7호
    • /
    • pp.35-41
    • /
    • 2017
  • Purpose - A product bundling is a marketing approach where multiple products or components are packaged together into one bundle solution. This paper aims to introduce an optimal bundle search problem (hereinafter called "OBSP") which may be embedded with online recommendation system to provide an optimized service considering pairwise discount and delivery cost. Research design, data, and methodology - Online retailers have their own discount policy and it is time consuming for online shoppers to find an optimal bundle. Unlike an online system recommending one item for each search, the OBSP considers multiple items for each search. We propose a mathematical formulation with numerical example for the OBSP and analyzed the complexity of the problem. Results - We provide two results from the complexity analysis. In general case, the OBSP belongs to strongly NP-Hard which means the difficulty of the problem while the special case of OBSP can be solved within polynomial time by transforming the OBSP into the minimum weighted perfect matching problem. Conclusions - In this paper, we propose the OBSP to provide a customized service considering bundling price and delivery cost. The results of research will be embedded with an online recommendation system to help customers for easy and smart online shopping.

Internet Shopping Optimization Problem With Delivery Constraints

  • Chung, Ji-Bok
    • 유통과학연구
    • /
    • 제15권2호
    • /
    • pp.15-20
    • /
    • 2017
  • Purpose - This paper aims to suggest a delivery constrained internet shopping optimization problem (DISOP) which must be solved for online recommendation system to provide a customized service considering cost and delivery conditions at the same time. Research design, data, and methodology - To solve a (DISOP), we propose a multi-objective formulation and a solution approach. By using a commercial optimization software (LINDO), a (DISOP) can be solved iteratively and a pareto optimal set can be calculated for real-sized problem. Results - We propose a new research problem which is different with internet shopping optimization problem since our problem considers not only the purchasing cost but also delivery conditions at the same time. Furthermore, we suggest a multi-objective mathematical formulation for our research problem and provide a solution approach to get a pareto optimal set by using numerical example. Conclusions - This paper proposes a multi-objective optimization problem to solve internet shopping optimization problem with delivery constraint and a solution approach to get a pareto optimal set. The results of research will contribute to develop a customized comparison and recommendation system to help more easy and smart online shopping service.

Design and Implementation of Dynamic Recommendation Service in Big Data Environment

  • Kim, Ryong;Park, Kyung-Hye
    • Journal of Information Technology Applications and Management
    • /
    • 제26권5호
    • /
    • pp.57-65
    • /
    • 2019
  • Recommendation Systems are information technologies that E-commerce merchants have adopted so that online shoppers can receive suggestions on items that might be interesting or complementing to their purchased items. These systems stipulate valuable assistance to the user's purchasing decisions, and provide quality of push service. Traditionally, Recommendation Systems have been designed using a centralized system, but information service is growing vast with a rapid and strong scalability. The next generation of information technology such as Cloud Computing and Big Data Environment has handled massive data and is able to support enormous processing power. Nevertheless, analytic technologies are lacking the different capabilities when processing big data. Accordingly, we are trying to design a conceptual service model with a proposed new algorithm and user adaptation on dynamic recommendation service for big data environment.

온라인 패션쇼핑몰의 개인 상품 추천서비스가 인지적 태도와 감정적 애착을 통해 서비스 사용행동에 미치는 영향 (The Effect of Personalized Product Recommendation Service of Online Fashion Shopping Mall on Service Use Behaviors through Cognitive Attitude and Emotional Attachment)

  • 최미영
    • 한국의류산업학회지
    • /
    • 제23권5호
    • /
    • pp.586-597
    • /
    • 2021
  • Personalized product recommendation service is receiving attention as a new marketing strategy while supporting consumer information search and purchasing decisions. This study attempted to verify the effect of self-reference on service use behavior through the dual path of cognitive attitude and emotional attachment. Using convenience sampling, an online survey was conducted with 324 women who were in their 20s and 30s. After collecting and compiling the survey data, the reliability and validity of variables constituting the conceptual research model were verified through confirmatory factor analysis using AMOS 22.0. Next, the significance of sequentially mediated pathways was verified using Process 3.5 Model 80. The results showed that self-referencing not only significantly affects service use intention by simply mediating cognitive attitudes but also sequentially mediates cognitive attitudes and additional information search. Furthermore, self-referencing was significant as an indirect path to service use intention by mediating additional information search. However, in the path mediated by emotional attachment, self-referencing was considered as a simple mediated path leading to service usage intention. These results indicate a dual path in the psychological mechanism, through cognitive and emotional evaluation, that prompts consumer behavioral responses to the personalized product information provided in the shopping process.

패션 추천서비스 알고리즘에서 상품유형과 속성 조합의 영향 (Influence of product category and features on fashion recommendation service algorithm)

  • 최지윤;이규혜
    • 한국의상디자인학회지
    • /
    • 제24권2호
    • /
    • pp.59-72
    • /
    • 2022
  • The online fashion market in the 21st century has shown rapid growth. Against this backdrop, using consumer activity data to provide customized customer services has emerged as a viable business model that draws attention. Algorithm-based personalized recommendation services are a good example. But their application in fashion products has clear limitations. It is not easy to identify consumers' perceptions of the attributes of fashion, which are various, hard to define, and very sensitive to trends. So there is a need to compile data on consumers' underlying awareness and to carry out defined research to increase the utilization of such services in the fashion industry and further engage consumers. This research aims to classify the attributes and types of fashion products and to identify consumers' perceptions of a given situation where a recommendation service is offered. To find out consumers' perceptions of and satisfaction with recommendation services, an online and mobile survey was conducted on women in their 20s and 30s, a group that uses recommendation services frequently. A total of 455 responses were used for analysis. SPSS 28.0 was used, combined with Conjoint Analysis and multiple regression, to analyze data. The study results could provide insights into a better understanding of recommendation services and be used as basic data for companies to identify consumers' preferences and draw up a detailed strategy for market segmentation.

암묵적 피드백 기반 반려동물 용품 추천 시스템 (Pet Shop Recommendation System based on Implicit Feedback)

  • 최희열;강윤희;강명주
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권8호
    • /
    • pp.1561-1566
    • /
    • 2017
  • 기계 학습과 인공 지능 기술의 발전으로 다양한 응용분야들이 가능해지고 있고, 이중에 추천 시스템은 이미 여러 업체들에서 영화 추천이나 상품 추천 등의 서비스에 적용하여 효과를 보고 있다. 이러한 서비스 중인 추천 시스템들의 대부분은 아이템의 내용을 분석하여 추천하거나 아니면 평점과 같은 직접적인 피드백에 기반하여 시스템을 학습하고 추천하고 있다. 하지만 많은 온라인 쇼핑몰 중에는 아이템의 내용을 분석하는 것이 어렵고, 직접적인 피드백 정보가 없거나 혹은 거의 없어 추천 시스템 구축이 어려운 경우가 많다. 이러한 경우에도 사용자의 상품 조회에 관한 로그 기록들은 어렵지 않게 확보할 수 있고, 로그 기록들만 가지고도 추천 서비스를 제공할 수 있다면 서비스의 질을 향상할 수 있을 것으로 기대된다. 본 논문에서는 사용자의 로그 기록으로부터 암묵적인 피드백인 상품 조회 정보를 추출하고, 암묵적인 피드백에 기반한 추천 시스템을 구현하고, 제안된 시스템은 온라인 반려동물 용품점에 적용하여 확인한다. 즉, 사용자들의 상품조회를 위한 클릭정보만을 활용하여 반려동물 용품 추천 시스템을 구축하여 서비스로 확인한다.