• Title/Summary/Keyword: online map

Search Result 143, Processing Time 0.023 seconds

Analysis on Romanization of Korean Geographical Names in Foreign Countries (해외에서의 한국지명 표기 실태 분석)

  • Kim, Sun-Hee;Park, Kyeong;Lee, Hae-Mi
    • Journal of the Korean Geographical Society
    • /
    • v.44 no.6
    • /
    • pp.706-722
    • /
    • 2009
  • This study aims to find the ways to correct and fix the errors in transcription by analyzing Romanization of Korean geographical names in foreign countries. The gazetteers from many countries, place name databases, and map-providing websites are the main source of research. Common error types found in this study are variant name posting, subordinated marking, double posting, spelling errors, and location errors. In fact, transcription of geographical names exhibits more diverse forms and types. The counter measures to fix these errors are as follows, firstly, consistent efforts with regular monitoring to fix errors are essential. Secondly, the one and only standardized Romanization principle is urgent. Thirdly, prompt update and publication in case of place name and/or boundary change is necessary. Fourthly, efforts to register unregistered geographical names are necessary. Lastly, the establishment of central agency solely for the management of geographical names is required.

Development of Unmanned Payment System based on QR Code optimized for Non-face-to-face (비대면에 최적화된 QR 코드기반 무인 결제 시스템 개발)

  • Kim, Yeon-Woo;Hwang, Seung-Yeon;Shin, Dong-Jin;Kim, Jeong-Joon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.4
    • /
    • pp.165-170
    • /
    • 2022
  • By reducing time spent outside, a shopping system was developed for middle-aged and elderly people who mainly use neighborhood marts and neighborhood mart managers. The main functions of this app are direct shopping and online shopping, and it was developed using QR code using Zxing library on Android and Kakao Map using Kakao API. In addition, it provides information such as payment statistics and bulletin board posts that members need through recycler view and graphs in an easy-to-read manner. Through this system, members can efficiently manage by reducing fatigue when using the mart through direct purchase using QR code and delivery through map, and reducing manpower wastage as a mart manager. Also, as a mart manager, more consumers will be able to sell more items.

Development of Sentiment Analysis Model for the hot topic detection of online stock forums (온라인 주식 포럼의 핫토픽 탐지를 위한 감성분석 모형의 개발)

  • Hong, Taeho;Lee, Taewon;Li, Jingjing
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.187-204
    • /
    • 2016
  • Document classification based on emotional polarity has become a welcomed emerging task owing to the great explosion of data on the Web. In the big data age, there are too many information sources to refer to when making decisions. For example, when considering travel to a city, a person may search reviews from a search engine such as Google or social networking services (SNSs) such as blogs, Twitter, and Facebook. The emotional polarity of positive and negative reviews helps a user decide on whether or not to make a trip. Sentiment analysis of customer reviews has become an important research topic as datamining technology is widely accepted for text mining of the Web. Sentiment analysis has been used to classify documents through machine learning techniques, such as the decision tree, neural networks, and support vector machines (SVMs). is used to determine the attitude, position, and sensibility of people who write articles about various topics that are published on the Web. Regardless of the polarity of customer reviews, emotional reviews are very helpful materials for analyzing the opinions of customers through their reviews. Sentiment analysis helps with understanding what customers really want instantly through the help of automated text mining techniques. Sensitivity analysis utilizes text mining techniques on text on the Web to extract subjective information in the text for text analysis. Sensitivity analysis is utilized to determine the attitudes or positions of the person who wrote the article and presented their opinion about a particular topic. In this study, we developed a model that selects a hot topic from user posts at China's online stock forum by using the k-means algorithm and self-organizing map (SOM). In addition, we developed a detecting model to predict a hot topic by using machine learning techniques such as logit, the decision tree, and SVM. We employed sensitivity analysis to develop our model for the selection and detection of hot topics from China's online stock forum. The sensitivity analysis calculates a sentimental value from a document based on contrast and classification according to the polarity sentimental dictionary (positive or negative). The online stock forum was an attractive site because of its information about stock investment. Users post numerous texts about stock movement by analyzing the market according to government policy announcements, market reports, reports from research institutes on the economy, and even rumors. We divided the online forum's topics into 21 categories to utilize sentiment analysis. One hundred forty-four topics were selected among 21 categories at online forums about stock. The posts were crawled to build a positive and negative text database. We ultimately obtained 21,141 posts on 88 topics by preprocessing the text from March 2013 to February 2015. The interest index was defined to select the hot topics, and the k-means algorithm and SOM presented equivalent results with this data. We developed a decision tree model to detect hot topics with three algorithms: CHAID, CART, and C4.5. The results of CHAID were subpar compared to the others. We also employed SVM to detect the hot topics from negative data. The SVM models were trained with the radial basis function (RBF) kernel function by a grid search to detect the hot topics. The detection of hot topics by using sentiment analysis provides the latest trends and hot topics in the stock forum for investors so that they no longer need to search the vast amounts of information on the Web. Our proposed model is also helpful to rapidly determine customers' signals or attitudes towards government policy and firms' products and services.

Dual-Phase Approach to Improve Prediction of Heart Disease in Mobile Environment

  • Lee, Yang Koo;Vu, Thi Hong Nhan;Le, Thanh Ha
    • ETRI Journal
    • /
    • v.37 no.2
    • /
    • pp.222-232
    • /
    • 2015
  • In this paper, we propose a dual-phase approach to improve the process of heart disease prediction in a mobile environment. Firstly, only the confident frequent rules are extracted from a patient's clinical information. These are then used to foretell the possibility of the presence of heart disease. However, in some cases, subjects cannot describe exactly what has happened to them or they may have a silent disease - in which case it won't be possible to detect any symptoms at this stage. To address these problems, data records collected over a long period of time of a patient's heart rate variability (HRV) are used to predict whether the patient is suffering from heart disease. By analyzing HRV patterns, doctors can determine whether a patient is suffering from heart disease. The task of collecting HRV patterns is done by an online artificial neural network, which as well as learning knew knowledge, is able to store and preserve all previously learned knowledge. An experiment is conducted to evaluate the performance of the proposed heart disease prediction process under different settings. The results show that the process's performance outperforms existing techniques such as that of the self-organizing map and gas neural growing in terms of classification and diagnostic accuracy, and network structure.

E-voting Implementation in Egypt

  • Eraky, Ahmed
    • Journal of Contemporary Eastern Asia
    • /
    • v.16 no.1
    • /
    • pp.48-68
    • /
    • 2017
  • Manual elections processes in Egypt have several negative effects; that mainly leads to political corruption due to the lack of transparency. These issues negatively influence citizen's participation in the political life; while electronic voting systems aim to increase efficiency, transparency, and reduce the cost comparing to the manual voting. The main research objectives are, finding the successful factors that positively affects E-voting implementation in Egypt, in addition of finding out the reasons that keep Egyptian government far from applying E-voting, and to come up with the road map that Egyptian government has to take into consideration to successfully implement E-voting systems. The findings of the study suggest that there are seven independent variables affecting e-voting implementation which are; leadership, government willingness, legal framework, technical quality, awareness, citizen's trust in government and IT literacy. Technology-Organization-Environment (TOE) theory was used to provide an analytical framework for the study. A quantitative approach (i.e., survey questionnaire) strategy was used to collect data. A random sampling method was used to select the participants for the survey, whom are targeted voters in Egypt and have access to the internet, since the questionnaire was distributed online and the data is analyzed using regression analysis. Practical implications of this study will lead for more citizen participation in the political life due to the transparency that E-voting system will create, in addition to reduce the political corruption.

Minimizing the MOLAP/ROLAP Divide: You Can Have Your Performance and Scale It Too

  • Eavis, Todd;Taleb, Ahmad
    • Journal of Computing Science and Engineering
    • /
    • v.7 no.1
    • /
    • pp.1-20
    • /
    • 2013
  • Over the past generation, data warehousing and online analytical processing (OLAP) applications have become the cornerstone of contemporary decision support environments. Typically, OLAP servers are implemented on top of either proprietary array-based storage engines (MOLAP) or as extensions to conventional relational DBMSs (ROLAP). While MOLAP systems do indeed provide impressive performance on common analytics queries, they tend to have limited scalability. Conversely, ROLAP's table oriented model scales quite nicely, but offers mediocre performance at best relative to the MOLAP systems. In this paper, we describe a storage and indexing framework that aims to provide both MOLAP like performance and ROLAP like scalability by essentially combining some of the best features from both. Based upon a combination of R-trees and bitmap indexes, the storage engine has been integrated with a robust OLAP query engine prototype that is able to fully exploit the efficiency of the proposed storage model. Specifically, it utilizes an OLAP algebra coupled with a domain specific query optimizer, to map user queries directly to the storage and indexing framework. Experimental results demonstrate that not only does the design improve upon more naive approaches, but that it does indeed offer the potential to optimize both query performance and scalability.

EvoSNP-DB: A database of genetic diversity in East Asian populations

  • Kim, Young Uk;Kim, Young Jin;Lee, Jong-Young;Park, Kiejung
    • BMB Reports
    • /
    • v.46 no.8
    • /
    • pp.416-421
    • /
    • 2013
  • Genome-wide association studies (GWAS) have become popular as an approach for the identification of large numbers of phenotype-associated variants. However, differences in genetic architecture and environmental factors mean that the effect of variants can vary across populations. Understanding population genetic diversity is valuable for the investigation of possible population specific and independent effects of variants. EvoSNP-DB aims to provide information regarding genetic diversity among East Asian populations, including Chinese, Japanese, and Korean. Non-redundant SNPs (1.6 million) were genotyped in 54 Korean trios (162 samples) and were compared with 4 million SNPs from HapMap phase II populations. EvoSNP-DB provides two user interfaces for data query and visualization, and integrates scores of genetic diversity (Fst and VarLD) at the level of SNPs, genes, and chromosome regions. EvoSNP-DB is a web-based application that allows users to navigate and visualize measurements of population genetic differences in an interactive manner, and is available online at [http://biomi.cdc.go.kr/EvoSNP/].

A preliminary Study on Development of Overseas Construction Big Issues Based on Analysis of Big Data (빅 데이터 분석을 통한 해외건설 빅 이슈 개발에 관한 기초연구)

  • Park, Hwan-Pyo;Han, Jae-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.93-94
    • /
    • 2017
  • This study have derived the big issue of overseas construction through big data analysis. For identification of big issues on overseas construction, domestic online articles, 30 daily newspapers like the JoongAng Ilbo, 7 construction related articles including construction economy and 1,759 local newspapers and small media companies were analyzed from October 1st, 2015 to September 30th, 2016. 13,884 cases in total were used for big data analyses and big issue candidates were identified. The analysis result is as shown below. First, looking into major issues on overseas construction for a year, construction orders in the Middle East decreased because of the drop in oil prices. Accordingly, there were discussions on concerns and crises we may face as profitabilities worsened in overseas construction. Second, analyzing main concern based on 8 key words on overseas construction among construction issues for the last one year, it was found as following: Region (29.4%), Business environment (21.4%), Group (15.8%), Profitability (14.5%), Policy and Institution (7.8%), Market environment (4.2%), Business (project) (4.15%), and Education (3.2%). Third, among 30 issues on 8 key words, 10 key issues that are likely to spread and continue were identified. Then, a semantic network map among key words and centrality were analyzed.

  • PDF

A dynamic procedure for defection detection and prevention based on SOM and a Markov chain

  • Kim, Young-ae;Song, Hee-seok;Kim, Soung-hie
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.11a
    • /
    • pp.141-148
    • /
    • 2003
  • Customer retention is a common concern for many industries and a critical issue for the survival in today's greatly compressed marketplace. Current customer retention models only focus on detection of potential defectors based on the likelihood of defection by using demographic and customer profile information. In this paper, we propose a dynamic procedure for defection detection and prevention using past and current customer behavior by utilizing SOM and Markov chain. The basic idea originates from the observation that a customer has a tendency to change his behavior (i.e. trim-out his usage volumes) before his eventual withdrawal. This gradual pulling out process offers the company the opportunity to detect the defection signals. With this approach, we have two significant benefits compared with existing defection detection studies. First, our procedure can predict when the potential defectors could withdraw and this feature helps to give marketing managers ample lead-time for preparing defection prevention plans. The second benefit is that our approach can provide a procedure for not only defection detection but also defection prevention, which could suggest the desirable behavior state for the next period so as to lower the likelihood of defection. We applied our dynamic procedure for defection detection and prevention to the online gaming industry. Our suggested procedure could predict potential defectors without deterioration of prediction accuracy compared to that of the MLP neural network and DT.

  • PDF

Prediction of Energy Production of China Donghai Bridge Wind Farm Using MERRA Reanalysis Data (MERRA 재해석 데이터를 이용한 중국 동하이대교 풍력단지 에너지발전량 예측)

  • Gao, Yue;Kim, Byoung-su;Lee, Joong-Hyeok;Paek, Insu;Yoo, Neung-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.3
    • /
    • pp.1-8
    • /
    • 2015
  • The MERRA reanalysis data provided online by NASA was applied to predict the monthly energy productions of Donghai Bridge Offshore wind farms in China. WindPRO and WindSim that are commercial software for wind farm design and energy prediction were used. For topography and roughness map, the contour line data from SRTM combined with roughness information were made and used. Predictions were made for 11 months from July, 2010 to May, 2011, and the results were compared with the actual electricity energy production presented in the CDM(Clean Development Mechanism)monitoring report of the wind farm. The results from the prediction programs were close to the actual electricity energy productions and the errors were within 4%.