• Title/Summary/Keyword: one-way reinforced concrete slab

Search Result 41, Processing Time 0.024 seconds

Required ties in continuous RC beams to resist progressive collapse by catenary action

  • Alrudaini, Thaer M.S.
    • Structural Engineering and Mechanics
    • /
    • v.78 no.4
    • /
    • pp.403-411
    • /
    • 2021
  • Ties are mandated by many design guidelines and codes to prevent the progressive collapse of buildings initiated by local failures. This study develops a model to estimate catenary/cable action capacity and the required ties in continuous reinforced concrete beams to bridge above the potential failed interior columns. The developed model is derived based on virtual work method and verified using test results presented in the literature. Also, parametric investigations are conducted to estimate the required ties in continuous reinforced concrete beams supporting one-way slab systems. A comparison is conducted between the estimated tie reinforcement using the developed model and that provided by satisfying the integrity provisions of the ACI 318-14 (2014) code. It is shown that the required tie reinforcements to prevent progressive collapse using the developed model are obviously larger than that provided by the integrity requirements of the ACI 318-14 (2014) code. It has been demonstrated that the increases in the demanded tie reinforcements over that provided by satisfying ACI 318-14 (2014) integrity provisions are varied between 1.01 and 1.46.

Experimental Study on Flexural Performance of Composite Slabs Reinforced with GFRP-Deckplate (GFRP-데크플레이트로 보강한 합성 슬래브의 휨성능 평가에 관한 실험적 연구)

  • Choi, Bong-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.165-170
    • /
    • 2009
  • In this study, the flexural experiment was conducted to propose the one-way composite slab system composed of concrete and GFRP-Deckplate by comparing with the composite deck slab system with bar-mesh As a result of experiment, the specimens of the proposed GFRP-Deck composite slab were better than the specimens for comparison in the flexural performance. It is effective for the building structures exposed to air pollution or salt.

Numerical Investigation for Cumulative Damage Assessment of a One-way RC Slab subjected to Consecutive Explosions (전산수치해석을 이용한 일방향 철근콘크리트 슬래브의 연속폭발 누적피해 평가기법 연구)

  • Ji, Hun;Sung, Seung-Hun;Chong, Jin Wung;Choi, Yoon Soo
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.2
    • /
    • pp.119-127
    • /
    • 2020
  • This study numerically investigated a structural behavior subjected to consecutive explosions. To this end, a small scale one-way reinforced slab (RC) with fixed-fixed boundary condition was considered as the target structure, and a commercial software, LS-DYNA, was utilized for finite element (FE) analysis. Prior to performing FE analysis, preliminary tests were carried out to verification of a computational model for the one-way RC slab. In the numerical simulation, identical blast loads were consecutively applied to the structure, and cumulative damage assessment were carried out based on its maximum dynamic displacements. As a result of the numerical simulation, it was found that maximum displacements considering permanent deformation due to a prior explosion were almost linearly increased in every explosion until the hazardous damage threshold.

Strengthening of Cutouts in Existing One-Way Spanning R. C. Flat Slabs Using CFRP Sheets

  • Shehab, Hamdy K.;Eisa, Ahmed S.;El-Awady, Kareem A.
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.327-341
    • /
    • 2017
  • Openings in slabs are usually required for many different applications such as aeriation ducts and air conditioning. Opening in concrete slabs due to cutouts significantly decrease the member stiffness. There are different techniques to strengthen slabs with opening cutouts. This study presents experimental and numerical investigations on the use of Carbon Fiber Reinforced Polymers (CFRP) as strengthening material to strengthen and restore the load carrying capacity of R.C. slabs after having cutout in the hogging moment region. The experimental program consisted of testing five (oneway spanning R.C. flat slabs) with overhang. All slabs were prismatic, rectangular in cross-section and nominally 2000 mm long, 1000 mm width, and 100 mm thickness with a clear span (distance between supports) of 1200 mm and the overhang length is 700 mm. All slabs were loaded up to 30 kN (45% of ultimate load for reference slab, before yielding of the longitudinal reinforcement), then the load was kept constant during cutting concrete and steel bars (producing cut out). After that operation, slabs were loaded till failure. An analytical study using finite element analysis (FEA) is performed using the commercial software ANSYS. The FEA has been validated and calibrated using the experimental results. The FE model was found to be in a good agreement with the experimental results. The investigated key parameters were slab aspect ratio for the opening ratios of [1:1, 2:1], CFRP layers and the laminates widths, positions for cutouts and the CFRP configurations around cutouts.

An Experimental Study of Shear Capacity for One-way Concrete Slabs Reinforced with Amorphous Micro Steel Fibers (비정질 강섬유 보강 일방향 콘크리트 슬래브의 전단성능에 대한 실험적 연구)

  • Kim, Seon-Du;Choi, Kyoung-Kyu;Choi, Oan-Chul;Choi, Se-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.2
    • /
    • pp.128-135
    • /
    • 2013
  • In this study, one-way shear tests were performed to investigate the shear capacity of amorphous steel fiber-reinforced concrete slabs. Primary test parameters were the shear reinforcing method(Stirrups or amorphous steel fibers) and shear reinforcement ratio(0.25 and 0.5%). A series of four one-way slab specimens including a specimen without shear reinforcement and three specimens with shear reinforcements(stirrup, 0.25%, and 0.5% amorphous steel fibers) were tested. The test results showed that 0.25% amorphous steel fibers improved the shear capacity, but 0.5% amorphous steel fibers did not improve the shear capacity compared to the specimen with conventional shear reinforcement of 0.25%. Additional study is needed to understand the variation of shear capacity according to fiber volume fraction.

A Study on the Calculation Method for Flexural Strength of One-way Hollow Slabs (일방향 중공슬래브의 휨강도 산정방법에 관한 연구)

  • Kim, Hyun-Su;Lim, Jun-Ho;Kang, Joo-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.6
    • /
    • pp.541-548
    • /
    • 2012
  • The hollow slab has advantages that its self-weight does not greatly increase notwithstanding the increase of its thickness and its flexural performance does not significantly degrade in comparison with general reinforced concrete slab. However, the utilization of the hollow slab is currently being underestimated in spite of structural system that enables economic design of building and construction of eco-friendly structure. the significant reasons for this situation is that the method of structural analysis and design for hollow slab is not generalized. In this study, to consider practical compressive zone of hollow slab, the equation for its flexural strength is proposed by the volume of compressive stress block according to neutral axis location in hollow section assumed. Existing estimation method of flexural strength of hollow slab considering only compressive zone above hollow part is evaluated as the most conservative method and the method estimating flexural strength by two alternative cross-section of hollow slab is evaluated as more practical method.

A Study on the Optimal Design Method of Reinforced Concrete Two Way Slabs (Direct Method에 의한 鐵筋콘크리트 二方向슬라브의 最適設計에 관한 硏究)

  • Kim, Yong-Hee;Lyu, Hong-Leal;Park, Moon-Ho
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.2
    • /
    • pp.97-105
    • /
    • 1984
  • We have, at present, found some studies on the optimum design of reinforced concrete about the simple slab but very few about the multi-story and multi-span slab. The aim of this study is to make a optimum design of coalesced beam and column slab constructure. Some results of the evaluation by using the optimalized algorithm that was developed in this study are as follows. 1. Slab was mainly restricted by the constraint of effective depth, bending moment, and minimum steel ratio; especially the effective depth was the preceding crifical constraint. In the optimum design of slab, therefore, the constraint about the minimum thickness should be surely considered. 2. This optimum design is good economy as much as some 3.4&~6.2% compared with the conventional design method. 3. In most case, it was converged by 3 to 6 iteratin regardless of the highest or lowest value and only in case of N=1 and case 1, there is a little oscillation after the 3rd iteration but it makes no difference in taking either the highest or lowest value because the range of oscillation is low as much as about 1.2% of the total construction cost. 4. In this study the result seeking for constraints that make no difference in the least cost design shows that shear stress and maximum steel ration may not be considered in it. 5. Bending moment was converged by one time iteration regardless of the initial value, while steel ratio, in most case, by two times because both bending moment and steel ratio are the fuction of effective depth.

  • PDF

Development of Design Charts to Estimate Member Forces on Basement Wall (지하벽체의 최대부재력 산정을 위한 차트의 개발)

  • Kim, Young-Chan;Kim, Ju-Bum
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.3
    • /
    • pp.104-110
    • /
    • 2012
  • It is a common practice to design basement walls acting as a one-way slab or plate with idealized boundary conditions, resulting in potentially inefficient design. The walls are often supported by buttress columns and side walls in the vertical direction, thereby acting as a two-way slab. In this study, structural behavior of single-story, three-span basement wall subjected to lateral soil pressure was investigated. Three dimensional finite element analyses were conducted to determine the force distribution on the wall. Based on the numerical studies, a regression analysis was carried out to determine the design values of moments in vertical and horizontal directions as well as shear forces on the wall and design charts are developed. The proposed design method with accompanying design charts would enable practicing engineers to estimate member forces on the wall for preliminary design purpose without resorting to finite element analysis. Numerical examples demonstrated the applicability of the proposed method.

The Study on the Optimal NDT Method for the Explosion Damage Analysis for One-way RC Slabs (일방향 철근 콘크리트 슬래브의 폭발 피해 분석을 위한 최적의 비파괴검사법에 관한 연구)

  • Lee, Seoung-Jae;Oh, Tae-Keun;Park, Jong-Yil;Kim, Hie Sik
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.62-68
    • /
    • 2017
  • It is necessary to analyze on the compressive strength among material properties of concrete for confirming damages of architectures due to large explosion. A non destructive test is known as the representative methods estimating compressive strength and ultrasonic pulse velocity, rebound hardness test are widely used because of their simplicity, convenience. But combined method supplementing two types is applied at now as they are affected by the characteristics of test specimen. In this research to check damages on the members of structure before and after explosion, the characteristics of compressive strength are compared and analyzed through a real explosion test prior to full scale structures. The test results showed that the larger the TNT powder and the shorter the distance, the greater the decrease in strength before and after the explosion and that the largest displacement and moment for the explosive load and the greatest decrease in the strength at the central part. Due to the surface condition and the thickness variation of the concrete specimens, the standard deviation value is the smallest in the combining method of fusion of the ultrasonic method and rebound hardness method. Thus, the combining method can be one of appropriate methods to evaluate the strength in the reinforced concrete structures damaged by the explosion.

Optimization for Precast Prestressed Wide-U Beams with the Least Depth (최소깊이 프리캐스트 프리스트레스트 U형보의 최적화)

  • Yul Sung-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.18-26
    • /
    • 2004
  • The cost of underground work is a dominant factor to determine the total construction fee. It is generally 2 ${\~}$ 2.5 times higher than that of above ground for building with the same height. 'A new precast prestressed framing plan for underground parking building' was suggested with the beam of the least depth - U-type beams. The depth of regular rectangular reinforced concrete beam which is currently used in the underground parking of apartments could be reduced up to 12 ${\~}$ 34cm/story due to the development of a U-beams from the optimum process. Two full scale prototype U-beams were tested in this study. It was found that the Wide U-beams in the test showed higher strength than calculated nominal and design, however need to provide temporary supports to meet the flexural moment of construction load at the simply supported state before the lopping concrete hardens.