• Title/Summary/Keyword: one-pot 합성

Search Result 56, Processing Time 0.02 seconds

Li, Zr doped mesoporous silica: One pot synthesis and its application to $CO_2$ adsorption at low temperature (Li, Zr 담지 메조포러스 실리카 합성 : One pot 합성 및 저온 이산화탄소 흡착 응용)

  • Ganesh, Mani;Bhagiyalakshmi, Margandan;Peng, Mei Mei;Hemalatha, Pushparaj;Jang, Hyun-Tae
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.313-317
    • /
    • 2010
  • Li, Zr doped mesoporous silica was synthesized in one pot and investigated for low temperature $CO_2$ adsorption. Herein CTAB and TEOS are used as structural directing agent and silica source respectively. The characteristics of the material was obtained from FT IR, XRD, SEM, TG and BET results. ICP AES results revealed the presence of lithium and zirconium. The material possesses high surface area ($962.22m^2g^{-1}$) with mono dispersed particles of about 2 nm. The maximum $CO_2$ adsorption capacity is 5 wt % (50 mg/g) of $CO_2$/g of sorbent at $25^{\circ}C$, which is regenerable at $200^{\circ}C$. This regeneration temperature of the adsorbent is lower than the reported lithium zirconium silicate powder. Until now, there is no report for the synthesis of Li, Zr doped mesoporous silica. The performance studies illustrate that Li, Zr doped mesoporous silica is tunable, regenerable, recyclable and selective sorbent and hence found to be a promising candidate for $CO_2$ adsorption.

  • PDF

Facile and Convenient Synthesis and Characterization of Novel Schiff Bases Involving Heterocyclic Ring through One Pot Multicomponent Reactions under Mild Conditions (온화한 반응조건에서 One Pot 다성분 반응을 통해 이종원자고리를 포함한 새로운 시프염기의 쉽고 편리한 합성 및 특성)

Phosphomolybdic Acid-Catalyzed Highly Efficient and Simple One-Pot Synthesis of Quinoxaline (인 몰립덴산을 촉매로 이용한 효과적이고 간단한 퀸옥살린의 One-Pot합성)

  • Chaskar, Atul;Padalkar, Vikas;Phatangare, Kiran;Langi, Bhushan;Naik, Pallavi
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.6
    • /
    • pp.727-730
    • /
    • 2009
  • A series of quinoxaline derivatives were efficiently synthesized in excellent yield using phosphomolybdic acid as a catalyst. The advantages of present methods are ambient reaction temperature, simplicity of operation, high atom economy, recyclability of HPA catalyst and ecofriendly nature of reaction medium.

Synthesis of UV-Curable PDMS-Modified Urethane Acrylate Oligomer and Physical Properties of the Cured Film (광경화형 PDMS 변성 우레탄 아크릴레이트 올리고머 합성과 경화필름 물성에 관한 연구)

  • Yeo, Jun-Seok;Hwang, Seok-Ho
    • Elastomers and Composites
    • /
    • v.48 no.4
    • /
    • pp.249-255
    • /
    • 2013
  • Hydroxypropyl terminated PDMS was synthesized by the hydrosilylation reaction with allyl alcohol in the presence of Karstedt's catalyst. And them, an one-pot reaction with HDI isocyanurate trimer and hydroxyethyl methacrylate was conducted to give a silicone-modified urethane acrylate oligomer (PUA oligomer) having 9000 g/mol, weight average molecular weight. The synthesized PUA oligomer was characterized by using FT-IR and GPC. The UV-curable coatings were prepared by PUA oligomer blending with a reactive monomer (phenylthioethyl acrylate) under the different mole ratios. It was found that the refractive index of cured film increased when the reactive monomer was added but there was no relationship between the refractive index and amount of reactive monomer. Also, their transmittance for cured films was not change as increasing the content of reactive monomer.

Preparation of Iron Nanoparticles Impregnated Hydrochar from Lignocellulosic Waste using One-pot Synthetic Method and Its Characteristics (One-pot 합성 방법을 이용한 나노 철입자가 담지된 폐목재 기반 하이드로차의 제조 및 특성 평가)

  • Choi, Yu-Lim;Kim, Dong-Su;Angaru, Ganesh Kumar Reddy;Ahn, Hye-Young;Park, Kwang-Jin;Yang, Jae-Kyu;Chang, Yoon-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.1
    • /
    • pp.95-105
    • /
    • 2020
  • In this study, iron nanoparticles impregnated hydrochar (FeNPs@HC) was synthesized using lignocellulosic waste and simple one-pot synthetic method. During hydrothermal carbonization (HTC) process, the mixture of lignocellulosic waste and ferric nitrate (0.1~0.5 M) as a precursor of iron nanoparticles was added and heated to 220℃ for 3 h in a teflon sealed autoclave, followed by calcination at 600℃ in N2 atmosphere for 1 h. For the characterization of the as-prepared materials, X-ray diffraction (XRD), cation exchange capacity (CEC), fourier transform infrared spectrometer (FT-IR), Brunauer-Emmett-Teller (BET), transmission electron microscope (TEM), Energy Dispersive X-ray Spectroscopy (EDS) were used. The change of Fe(III) concentration in the feedstock influenced characteristics of produced FeNPs@HC and removal efficiency towards As(V) and Pb(II). According to the Langmuir isotherm test, maximum As(V) and Pb(II) adsorption capacity of Fe0.25NPs@HC were found to be 11.81 and 116.28 mg/g respectively. The results of this study suggest that FeNPs@HC can be potentially used as an adsorbent or soil amendment for remediation of groundwater or soil contaminated with arsenic and cation heavy metals.