• 제목/요약/키워드: one-dimensional patch

검색결과 33건 처리시간 0.027초

Active shape control of a cantilever by resistively interconnected piezoelectric patches

  • Schoeftner, J.;Buchberger, G.
    • Smart Structures and Systems
    • /
    • 제12권5호
    • /
    • pp.501-521
    • /
    • 2013
  • This paper is concerned with static and dynamic shape control of a laminated Bernoulli-Euler beam hosting a uniformly distributed array of resistively interconnected piezoelectric patches. We present an analytical one-dimensional model for a laminated piezoelectric beam with material discontinuities within the framework of Bernoulli-Euler and extent the model by a network of resistors which are connected to several piezoelectric patch actuators. The voltage of only one piezoelectric patch is prescribed: we answer the question how to design the interconnected resistive electric network in order to annihilate lateral vibrations of a cantilever. As a practical example, a cantilever with eight patch actuators under the influence of a tip-force is studied. It is found that the deflection at eight arbitrary points along the beam axis may be controlled independently, if the local action of the piezoelectric patches is equal in magnitude, but opposite in sign, to the external load. This is achieved by the proper design of the resistive network and a suitable choice of the input voltage signal. The validity of our method is exact in the static case for a Bernoulli-Euler beam, but it also gives satisfactory results at higher frequencies and for transient excitations. As long as a certain non-dimensional parameter, involving the number of the piezoelectric patches, the sum of the resistances in the electric network and the excitation frequency, is small, the proposed shape control method is approximately fulfilled for dynamic load excitations. We evaluate the feasibility of the proposed shape control method with a more refined model, by comparing the results of our one-dimensional calculations based on the extended Bernoulli-Euler equations to three-dimensional electromechanically coupled finite element results in ANSYS 12.0. The results with the simple Bernoulli-Euler model agree well with the three-dimensional finite element results.

일차원 패치 학습을 이용한 고속 내용 기반 보간 기법 (Fast Content Adaptive Interpolation Algorithm Using One-Dimensional Patch-Based Learning)

  • 강영욱;정신철;송병철
    • 대한전자공학회논문지SP
    • /
    • 제48권1호
    • /
    • pp.54-63
    • /
    • 2011
  • 본 논문은 저해상도 입력 영상을 고해상도 영상으로 복원하는 고속 학습기반 보간 기법을 제안한다. 일반적인 학습기반 초고해상도 기법은 여러 종류의 저해상도 영상과 고해상도 영상의 상관성을 통해 고주파 정보를 사전에 학습하고, 합성 단계에서 학습한 정보를 이용해 임의의 저해상도 영상을 고해상도 영상으로 복원한다. 이런 기존 학습기반 초 고해상도 기법은 방대한 양의 학습된 정보를 메모리에 저장해야만 하는 단점이 있을 뿐만 아니라 이차원 블록 단위 정합 과정을 거쳐야 하기 때문에 상당한 연산량이 요구된다. 이러한 문제점을 보완하기 위해 본 논문은 일차원 패치 단위 학습을 통해 학습 정보 저장용 메모리 크기 및 연산량을 크게 줄이는 기법을 제안한다. 실험 결과에 따르면, 제안한 기법은 전통적인 bicubic 보간 기법보다 평균 0.7dB 정도 높은 PSNR을 보이며, SSIM도 평균 0.01이상 향상되는 결과를 보인다.

접착 보강된 노치 균열판의 응력확대계수 산정을 위한 비등매개변수 모델 기반의 3차원 가상균열닫힘법 (Three-Dimensional Virtual Crack Closure Technique Based on Anisoparametric Model for Stress Intensity Factors of Patch Repaired Plates with Cracks at Notches)

  • 안재석;우광성
    • 대한토목학회논문집
    • /
    • 제32권1A호
    • /
    • pp.39-48
    • /
    • 2012
  • 본 논문에서는 V형 노치 및 반원형 노치 균열을 갖는 패치보강 적층판의 응력확대계수 산정을 위하여 수치해석적 방법을 사용한다. p-수렴 비등매개변수 모델이 고려되고, 이와 같은 비등매개변수 모델의 결과를 활용한 3차원 가상균열닫힘법에 대한 식이 표현된다. 1차원 로바토 함수로부터 확장된 3차원 계층적 형상함수를 가지고서, 임의의 요소에서의 변위장의 변위-변형률 관계와 3차원 구성방정식이 표현된다. 원형경계의 기하형상을 나태내기 위해 초유한사상기법을 사용한다. 응력집중계수, 응력분포, 자유도, 그리고 무차원 응력확대계수 등의 항목에 대해서, 제안된 모델의 정확도와 단순성이 기존의 결과들과의 비교를 통해 설명된다. 균열 적층판의 폭, 높이, 노치근입부의 반경, V형 노치의 경사각, 균열길이 등의 변화에 따른 응력확대계수가 산정된다.

Dynamic displacement tracking of a one-storey frame structure using patch actuator networks: Analytical plate solution and FE validation

  • Huber, Daniel;Krommer, Michael;Irschik, Hans
    • Smart Structures and Systems
    • /
    • 제5권6호
    • /
    • pp.613-632
    • /
    • 2009
  • The present paper is concerned with the design of a proper patch actuator network in order to track a desired displacement of the sidewalls of a one-storey frame structure; both, for the static and the dynamic case. Weights for each patch of the actuator network found in our previous work were based on beam theory; in the present paper a refinement of these weights by modeling the sidewalls of the frame structure as thin plates is presented. For the sake of calculating the refined weights approximate solutions of the plate equations are calculated by an extended Galerkin method. The solutions based on the analytical plate model are compared with three-dimensional Finite Element results computed in the commercially available code ANSYS. The patch actuator network is put into practice by means of four piezoelectric patches attached to each of the two sidewalls of the frame structures, to which electric voltages proportional to the analytically refined patch weights are applied. Analytical and numerical results coincide very well over a broad frequency range.

Sparse Representation based Two-dimensional Bar Code Image Super-resolution

  • Shen, Yiling;Liu, Ningzhong;Sun, Han
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권4호
    • /
    • pp.2109-2123
    • /
    • 2017
  • This paper presents a super-resolution reconstruction method based on sparse representation for two-dimensional bar code images. Considering the features of two-dimensional bar code images, Kirsch and LBP (local binary pattern) operators are used to extract the edge gradient and texture features. Feature extraction is constituted based on these two features and additional two second-order derivatives. By joint dictionary learning of the low-resolution and high-resolution image patch pairs, the sparse representation of corresponding patches is the same. In addition, the global constraint is exerted on the initial estimation of high-resolution image which makes the reconstructed result closer to the real one. The experimental results demonstrate the effectiveness of the proposed algorithm for two-dimensional bar code images by comparing with other reconstruction algorithms.

3차원 트랜지션을 이용한 광대역 마이크로스트립 패치 안테나의 설계 (A Design of the Wideband Microstrip Patch Antenna Using Three-dimensional Transition)

  • 정창권;강치운;윤서용;이봉석;김우수;이문수
    • 한국정보통신학회논문지
    • /
    • 제3권2호
    • /
    • pp.305-311
    • /
    • 1999
  • 본 논문에서는 유전율 1.06, 두께 $\lambda$/4인 발포체 기판상의 얇은 필름에 인쇄한 새로운 형태의 단일층 마이크로스트립 패치 안테나를 설계했다. 안테나의 대역폭이 광대역 임피던스정합을 얻기 위하여 3차원 트랜지션을 사용한다. 안테나의 방사패턴 및 반사손실, 전압정재파비는 "IE3D" 시뮬레이션 패키지를 사용하여 계산하여 측정결과와 비교했다. 측정 결과 전압정재파비 $\le$ 2:1 인 대역폭이 중심주파수 6.8 GHz에서 약 65%로 광대역 안테나임을 입증하였다. 그리고 반사손실 및 전압정재파비는 계산치와 실험치가 거의 일치하였다. 거의 일치하였다.

  • PDF

Dark-field Transmission Electron Microscopy Imaging Technique to Visualize the Local Structure of Two-dimensional Material; Graphene

  • Na, Min Young;Lee, Seung-Mo;Kim, Do Hyang;Chang, Hye Jung
    • Applied Microscopy
    • /
    • 제45권1호
    • /
    • pp.23-31
    • /
    • 2015
  • Dark field (DF) transmission electron microscopy image has become a popular characterization method for two-dimensional material, graphene, since it can visualize grain structure and multilayer islands, and further provide structural information such as crystal orientation relations, defects, etc. unlike other imaging tools. Here we present microstructure of graphene, particularly, using DF imaging. High-angle grain boundary formation wass observed in heat-treated chemical vapor deposition-grown graphene on the Si substrate using patch-quilted DF imaging processing, which is supposed to occur by strain around multilayer islands. Upon the crystal orientation between layers the multilayer islands were categorized into the oriented one and the twisted one, and their local structure were compared. In addition information from each diffraction spot in selected area diffraction pattern was summarized.

평면형 패치 안테나의 최적설계를 위한 PSO와 APSO 알고리즘 비교 연구 (A Comparative Study on the PSO and APSO Algorithms for the Optimal Design of Planar Patch Antennas)

  • 김군태;김형석
    • 전기학회논문지
    • /
    • 제62권11호
    • /
    • pp.1578-1583
    • /
    • 2013
  • In this paper, stochastic optimization algorithms of PSO (Particle Swarm Optimization) and APSO (Adaptive Particle Swam Optimization) are studied and compared. It is revealed that the APSO provides faster convergence and better search efficiency than the conventional PSO when they are adopted to find the global minimum of a two-dimensional function. The advantages of the APSO comes from the ability to control the inertia weight, and acceleration coefficients. To verify that the APSO is working better than the standard PSO, the design of a 10GHz microstrip patch as one of the elements of a high frequency array antenna is taken as a test-case and shows the optimized result with 5 iterations in the APSO and 28 iterations in th PSO.

3-D fracture analysis of cracked aluminum plates repaired with single and double composite patches using XFEM

  • Jamal-Omidi, Majid;Falah, Mehdi;Taherifar, Davood
    • Structural Engineering and Mechanics
    • /
    • 제50권4호
    • /
    • pp.525-539
    • /
    • 2014
  • Bonded composite-patch repair has been widely used to restore or extend the service life of damaged structures due to its effectiveness as a mechanical repair technique. In this paper using extended finite element method (XFEM), three-dimensional crack models are developed to examine the fracture behavior of centrally cracked aluminum plates repaired with single and double sided composite patches. Stress intensity factor (SIF) at the crack tip is used as the fracture criterion. In this regard, the effects of the crack lengths, patch materials, orientation of plies, adhesive and patch thickness are examined to estimate the SIF of the repaired plate and the repair performance. The obtained results show that composite patches have significant effect on reduction of the SIF at the crack tip. It is also proved that using double symmetric repair, in comparison to single one, reduces considerably SIF at the crack tip. Hence, the residual strength can be improved significantly as well as fatigue life of the structure. Investigation of ply orientation effects shows SIF increase as the ply orientation is changed from $0^{\circ}$ (perpendicular to the advancing crack) to $90^{\circ}$ (parallel to the crack line). However, the effectiveness of the ply orientation depends on the loading direction and the crack direction.

Experimental assessment of the piezoelectric transverse d15 shear sensing mechanism

  • Berik, Pelin;Benjeddou, Ayech;Krommer, Michael
    • Smart Structures and Systems
    • /
    • 제13권4호
    • /
    • pp.567-585
    • /
    • 2014
  • The piezoelectric transverse $d_{15}$ shear sensing mechanism is firstly assessed experimentally for a cantilever smart sandwich plate made of a piezoceramic axially poled patched core and glass fiber reinforced polymer composite faces. Different electrical connections are tested for the assessment of the sensor performance under a varying amplitude harmonic (at 24 Hz) force. Also, the dynamic response of the smart sandwich composite structure is monitored using different acquisition devices. The obtained experimentally sensed voltages are compared to those resulting from the benchmark three-dimensional piezoelectric coupled finite element simulations using a commercial code where realistic features, like equipotential conditions on the patches' electrodes and mechanical updating of the clamp, are considered. Numerically, it is found that the stiffness of the clamp, which is much softer than the ideal one, has an enormous influence on the sensed voltage of its adjacent patch; therefore, sensing with the patch on the free side would be more advantageous for a cantilever configuration. Apart from confirming the latter result, the plate benchmark experimental assessment showed that the parallel connection of its two oppositely poled patches has a moderate performance but better than the clamp side patch acting as an individual sensor.